Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

119results about How to "Taking image" patented technology

3D medical anatomical image system using 2d images

A medical imaging system generates 3D anatomical images from acquired 2D anatomical images. The system includes a synchronization processor for providing a synchronization signal identifying a particular phase of heart operation of a particular patient. An image acquisition device acquires 2D anatomical images of a patient heart in angularly variable imaging planes over multiple different heart cycles at the particular phase of heart operation in response to the synchronization signal and in response to recorded data indicating imaging previously being performed at particular imaging plane angles. An image processor stores the recorded data to prevent imaging overlap at the particular imaging plane angles and to prevent unnecessary radiation exposure of the patient. The image processor processes 2D images acquired by the image acquisition device of the patient heart in multiple different imaging planes having relative angular separation, to provide a 3D image reconstruction of the patient heart
Owner:SIEMENS HEALTHCARE GMBH

Imaging for a machine-vision system

Manufacturing lines include inspection systems for monitoring the quality of parts produced. Manufacturing lines for making semiconductor devices generally inspect each fabricated part. The information obtained is used to fix manufacturing problems in the semiconductor fab plant. A machine-vision system for inspecting devices includes a light source for propagating light to the device and an image detector that receives light from the device. Also included is a light sensor assembly for receiving a portion of the light from the light source. The light sensor assembly produces an output signal responsive to the intensity of the light received at the light sensor assembly. A controller controls the amount of light received by the image detector to a desired intensity range in response to the output from the light sensor. The image detector may include an array of imaging pixels. The imaging system may also include a memory device which stores correction values for at least one of the pixels in the array of imaging pixels. To minimize or control thermal drift of signals output from an array of imaging pixels, the machine-vision system may also include a cooling element attached to the imaging device. The light source for propagating light to the device may be strobed. The image detector that receives light from the device remains in a fixed position with respect to the strobed light source. A translation element moves the strobed light source and image detector with respect to the device. The strobed light may be alternated between a first and second level.
Owner:ISMECA SEMICONDUCTOR HOLDING SA

Parts manipulation and inspection system and method

Manufacturing lines include inspection systems for monitoring the quality of parts produced. Manufacturing lines for making semiconductor devices generally inspect each fabricated part. The information obtained is used to fix manufacturing problems in the semiconductor fab plant. A machine-vision system for inspecting devices includes a light source for propagating light to the device and an image detector that receives light from the device. Also included is a light sensor assembly for receiving a portion of the light from the light source. The light sensor assembly produces an output signal responsive to the intensity of the light received at the light sensor assembly. A controller controls the amount of light received by the image detector to a desired intensity range in response to the output from the light sensor. The image detector may include an array of imaging pixels. The imaging system may also include a memory device which stores correction values for at least one of the pixels in the array of imaging pixels. To minimize or control thermal drift of signals output from an array of imaging pixels, the machine-vision system may also include a cooling element attached to the imaging device. The light source for propagating light to the device may be strobed. The image detector that receives light from the device remains in a fixed position with respect to the strobed light source. A translation element moves the strobed light source and image detector with respect to the device. The strobed light may be alternated between a fit and second level.
Owner:LEMAIRE CHARLES A

Method and apparatus for enhanced spatial bandwidth wavefronts reconstructed from digital interferograms or holograms

The present invention discloses a method and an apparatus to compute a complex wavefield, referred to as the object wave o, by means of measuring the intensity signal resulting from the interference of the said object wave with a second wave termed the reference wave. The second wave r is assumed to have some non-vanishing mutual coherence with the said object wave o. The reference wave can be obtained from a source or from the object wave itself. The wave may be emitted from sources of variable degree of coherence and can be scattered waves, but also light-emitting molecules, matter waves such as electron beams or acoustical sources. The disclosed method relates to the said “non-linear method” (NLM). The innovation resides in the fact that the NLM improves considerably the bandwidth of the wavefront reconstructed from off-axis interferograms and holograms obtained in a single shot. The advantage is the significant improvement of the resolution of the images obtained from the reconstructed wavefront, i.e. amplitude and phase images. The said method also suppresses the artifacts resulting from the intensity recording of interferograms and holograms. The method is general in the sense that it can be used for any interferometric measurement, provided that it satisfies the simple requirement that the intensity of the reference wave is larger than the intensity of the object wave, and that the object wave modulated by the reference is confined to at least a quadrant of the spectrum. The disclosed method applies to interferometry, holography in optics, electron waves and acoustics. In particular, it can be implemented in phase, fluorescence, luminescence, electron and acoustic microscopy.
Owner:ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Three-dimensional display method and device therefor

A three-dimensional display method and a device therefor are provided in which a number of images can be displayed in the horizontal directions while image skips can be eliminated by providing overlaps of display angular ranges between adjacent images having horizontal display directions. A number of images are displayed in horizontal and vertical directions so that the display directions do not agree with each other, and by expanding vertical display angular ranges of entire images with a vertical-direction diffusion plate (17), a vertical display angular range common to the entire images is generated. In this common vertical display angular range, the entire images have different horizontal display directions. Thereby, a number of images can be displayed because image generating sources can be arranged also in the vertical direction in addition to the horizontal directions.
Owner:JAPAN SCI & TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products