Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

56results about How to "Reduce scattered light" patented technology

Semiconductor light emitting device

InactiveUS20110309384A1Reduce scatter lightLight extraction efficiency be enhanceSolid-state devicesSemiconductor devicesPhysicsElectricity
The present invention relates to a semiconductor light emitting device including: a substrate for element mounting; a wiring provided on the substrate; an LED element provided on the substrate and electrically connected to the wiring; an encapsulating resin layer for encapsulating the LED element; and a wavelength conversion layer which contains a phosphor material and converts a wavelength of light emitted by the LED element, in which the wavelength conversion layer is provided on an upper side of the LED element, and a diffusive reflection resin layer is provided in a state that side faces of the LED element are surrounded therewith, and an area at the LED element face side of the wavelength conversion layer is at least twice larger by area ratio than an area of light emitting area on an upper surface of the LED element.
Owner:SCHOTT AG

Substrate for fingerprint contact

A substrate for fingerprint contact includes a plate, and the plate includes a first surface and a second surface. The first surface is an optical diffusing surface. The optical diffusing surface is used for being contacted by a finger, and features hazed particles. The second surface faces an optical imaging system. The optical diffusing surface of the plate helps to enhance light to be evenly emitted to the finger and weakens the unnecessary scattered light to the optical imaging system, so as to enhance the recognition rate of a fingerprint when the optical imaging system is used for intercept the light applied on a finger.
Owner:GINGY TECH

Extending the stability of UV curable adhesives in 193NM laser systems

This disclosure is directed to an optical element and method in which a UV-curable adhesive, used along the edge of the optic to keep it in a holder, has been stabilized against degradation by below 300 nm radiation. The technical solution to the degradation of the adhesive includes both 193 nm scatter light reduction and protective coatings of plasma modified AlF3 films on at least that part of the optical element that is in contact with the adhesive.
Owner:CORNING INC

Method of manufacturing structure

InactiveUS20180074230A1Satisfactory antireflection performanceGood effectLayered productsCoatingsOptoelectronicsThermal water
Provided is a method of manufacturing a structure having a transparent fine uneven structural body formed by hot water treatment, in which a finer uneven structure is formed. Provided is a method of manufacturing a structure, the method being for manufacturing a structure including a substrate, and a transparent fine uneven structural body which is formed on a surface of the substrate by hot water treatment, including: a first step of forming a precursor film of the transparent fine uneven structural body on the substrate; a second step of forming a fine uneven structure on a surface of the precursor film; and a third step of subjecting, to hot water treatment, the precursor film on which the fine uneven structure is formed to form the transparent fine uneven structural body in which a peak value v0 of space frequency of the unevenness of the fine uneven structure formed in the second step satisfies v <v0 (Expression I). In Expression I, v0 represents a peak value of space frequency of the fine uneven structure, and v represents a peak value of space frequency of the transparent fine uneven structural body in a case in which the fine uneven structure is not formed on the surface of the precursor film.
Owner:FUJIFILM CORP

Replica optical element

InactiveUS20200081168A1Improve analytical precision and analytical sensitivityStray light also decreaseDiffraction gratingsReflectivityStray light
A replica optical element reduces stray light and is manufactured by the method comprising steps of: forming a mold-releasing agent film, forming a metal film, adhering, by which a top-surface of the metal film and an undersurface of a glass substrate, preparing a reflection optical element, removing the glass substrate from a mold 30 and, if a refractive index relative to D-line of the glass is n1 and a refractive index relative to D-line of the adhesive resin is n2, then a vertical reflectivity R meets a following formula (1).R=(n1−n2)2 / (n1+n2)2≤1.0×10−5  (1).
Owner:SHIMADZU CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products