Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

198results about How to "Reduce data loss" patented technology

Dynamic bandwidth allocation and service differentiation for broadband passive optical networks

A dynamic upstream bandwidth allocation scheme is disclosed, i.e., limited sharing with traffic prediction (LSTP), to improve the bandwidth efficiency of upstream transmission over PONs. LSTP adopts the PON MAC control messages, and dynamically allocates bandwidth according to the on-line traffic load. The ONU bandwidth requirement includes the already buffered data and a prediction of the incoming data, thus reducing the frame delay and alleviating the data loss. ONUs are served by the OLT in a fixed order in LSTP to facilitate the traffic prediction. Each optical network unit (ONU) classifies its local traffic into three classes with descending priorities: expedited forwarding (EF), assured forwarding (AF), and best effort (BE). Data with higher priority replace data with lower priority when the buffer is full. In order to alleviate uncontrolled delay and unfair drop of the lower priority data, the priority-based scheduling is employed to deliver the buffered data in a particular transmission timeslot. The bandwidth allocation incorporates the service level agreements (SLAs) and the on-line traffic dynamics. The basic limited sharing with traffic prediction (LSTP) scheme is extended to serve the classified network traffic.
Owner:NEW JERSEY INSTITUTE OF TECHNOLOGY

System and method for synchronizing data trasnmission across a variable delay interface

A method of synchronizing data transmission between a host computer system and a transmitter across an interface with variable delay or latency. The host computer system marks transition frames between successive transmission intervals and transfers the outgoing frames across the variable interface to the transmitter. The transmitter enqueues outgoing frames into one or more FIFO transmission queue(s) and processes the enqueued frames as appropriate for the communication protocol in use. Marked frames are detected as they reach the head of the appropriate transmit queue. In particular, while bypassing is not active, the transmitter transmits unmarked frames until the end of the current interval, or until there is insufficient time in the interval to transmit another frame or until a marked frame is detected. While bypassing is not active, the transmitter terminates transmission from the transmit queue when a marked frame is detected during each interval. While bypassing is active, the transmitter discards unmarked frames without transmission until a marked frame is detected. During each interval, the transmitter activates bypassing if a marked frame has not been detected and deactivates bypassing if a marked frame is detected while bypassing is active. The transmitter enables queue mark operation if a marked frame is detected while queue mark operation is not enabled. The transmitter increments a bypass counter each time an interval ends without detecting a marked frame, and disables queue mark operation if the bypass counter reaches a predefined limit.
Owner:CONEXANT

Dynamic bandwidth allocation and service differentiation for broadband passive optical networks

A dynamic upstream bandwidth allocation scheme is disclosed, i.e., limited sharing with traffic prediction (LSTP), to improve the bandwidth efficiency of upstream transmission over PONs. LSTP adopts the PON MAC control messages, and dynamically allocates bandwidth according to the on-line traffic load. The ONU bandwidth requirement includes the already buffered data and a prediction of the incoming data, thus reducing the frame delay and alleviating the data loss. ONUs are served by the OLT in a fixed order in LSTP to facilitate the traffic prediction. Each optical network unit (ONU) classifies its local traffic into three classes with descending priorities: expedited forwarding (EF), assured forwarding (AF), and best effort (BE). Data with higher priority replace data with lower priority when the buffer is full. In order to alleviate uncontrolled delay and unfair drop of the lower priority data, the priority-based scheduling is employed to deliver the buffered data in a particular transmission timeslot. The bandwidth allocation incorporates the service level agreements (SLAs) and the on-line traffic dynamics. The basic limited sharing with traffic prediction (LSTP) scheme is extended to serve the classified network traffic.
Owner:NEW JERSEY INSTITUTE OF TECHNOLOGY

Method and apparatus for handing off a mobile terminal between a mobile network and a wireless lan

A method for performing a handover of a mobile terminal between a 3G cell and a WLAN cell when the mobile terminal moves within a 3G cell into the coverage area of the WLAN cell. The present invention proposes that the handover be performed when there are no active calls. If there are ongoing calls, method proposes to wait until the calls are terminated before the handover is performed. After the ongoing calls are terminated, the handover is performed by disassociating from the radio access network of the 3G cell and associating with the access point of the WLAN, using the relatively straightforward disassociation and association procedures. The handover method according to the present invention obviates the need for complex and expensive protocols to ensure a seamless and error free handover of calls when moving from the coverage of the 3G cell to the coverage of the WLAN cell. This method can be used with either the loose coupling arrangement or the tight coupling arrangement.
Owner:THOMSON LICENSING SA

Method for switching group users in mobile-relay system

InactiveCN101626565AReduce data lossReduce the chance of users dropping callsNetwork data managementData transmissionActive mode
The invention discloses a method for switching cells of group users in a wireless communication system, relating to the technology of wireless communication. The method comprises the following steps: accessing the group users via a mobile-relay node and establishing a user information list stored in an ACTIVE mode on the mobile-relay node andbase stations, initializing the list when the users establish RRC connection with the mobile-relay node, automatically updating during switching; during switching execution, completing the context synchronization between the source base station and subordinate users of the mobile-relay node via information in the ACTIVE list by a source base station so as to enable users data transmission not to be broken, and reestablishing the context synchronization of the subordinate users by using the information in the ACTIVE list by the mobile-relay node after completing the switching among the base stations. The invention can be used in the mobile-relay system, can realize cross-regional soft switching of the group users and solves the problem of continuity met by the group users during switching.
Owner:SHENZHEN TINNO MOBILE TECH CO LTD

Method for creating an error correction coding scheme

The present invention relates to a method for reducing data loss comprising a first computing step for computing an intermediate result for each redundancy information entity of a redundancy set by processing respectively associated data information entities of a given data set on at least two main diagonals of a parity check matrix representing an error correction coding scheme. The method further comprises a second computing step for computing the information content of the respective redundancy information entity dependent on the respective intermediate result.
Owner:GLOBALFOUNDRIES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products