Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

50results about How to "Low luminous efficiency" patented technology

Light-emitting diode and method for manufacturing same, integrated light-emitting diode and method for manufacturing same, method for growing a nitride-based iii-v group compound semiconductor, substrate for growing a nitride-based iii-v group compound semiconductor, light source cell unit, light-emitting diode backlight, light-emitting diode illuminating device, light-emitting diode display and electronic instrument, electronic device and method for manufacturing same

A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
Owner:SONY CORP

Light emitting diode and manufacturing method thereof

A light emitting diode includes a thermal conductive substrate, an p-type GaN layer, an active layer and an n-type GaN layer sequentially stacked above the substrate and an electrode pad deposited on the n-type GaN layer. A surface of n-type GaN layer away from the active layer has a first diffusing section and a second diffusing section. The first diffusing section is adjacent to the electrode pad and the second diffusing section is located at the other side of the first diffusing section opposite to the electrode pad, wherein the doping concentration of the first diffusing section is less than that of the second diffusing section. The n-type GaN layer has an electrical resistance larger than that of the first diffusing section which in turn is larger than that of the second diffusing section.
Owner:HON HAI PRECISION IND CO LTD

Holographic Reconstruction System with an Optical Wave Tracking Means

A holographic reconstruction system is disclosed with spatial light modulation means, modulating interferable light waves from light sources with at least one video hologram, comprising optical focusing means, focusing the modulated light waves with the reconstructed object light points for at least one eye position for the eyes of observers and controllable electro-optical deflector means, which direct the focused modulated light waves with the reconstructed light points to at least one eye position in order to reduce the aberrations. The reconstruction system has the optical focusing means in a field of focusing elements, wherein each focusing element is provided with at least one interferable light source. The electro-optical deflector means lie in the light path of the interferable light waves after the optical focusing mean and have at least one field of deflector elements, which has at least one separately controllable electro-optical deflector element for each focusing element.
Owner:SEEREAL TECHNOLOGIES

Light-emitting diode and method for manufacturing same, integrated light-emitting diode and method for manufacturing same, method for growing a nitride-based iii-v group compound semiconductor, substrate for growing a nitride-based iii-v group compound semiconductor, light source cell unit, light-emitting diode backlight, light-emitting diode illuminating device, light-emitting diode display and electronic instrument, electronic device and method for manufacturing the same

A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
Owner:SONY CORP

Organic Electroluminescence Device

An organic electroluminescence device includes an organic layer disposed between at least one pair of electrodes, wherein the organic layer includes at least one fluorescent compound selected from compounds represented by the following general formulae (1) and (2):
    • wherein X1 to X16 each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon groups, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylalkylamino group having 7 to 30 carbon atoms or a substituted or unsubstituted alkenyl group having 8 to 30 carbon atoms; a pair of adjacent groups represented by X1 to X2 and a pair of adjacent substituents to groups represented by X1 to X2 may form a cyclic structure in combination; a pair of adjacent groups represented by X3 to X16 and a pair of adjacent substituents to groups represented by X3 to X16 may form a cyclic structure in combination; when the pair of adjacent substituents are aryl groups, the pair of substituents may be a single group; and in the formulae at least one of the substituents of X3 to X14 or X16 includes amino group.
Owner:RITDISPLAY

Light source unit that includes a luminescent material layer, a primary light source that emits light to excite the luminescent material layer, and an optical system including a plurality of mirrors, and projector

A light source unit and a projector including the light source unit are provided. The light source unit includes a luminous wheel having a segment area on which a luminescent material layer is formed which emits light of a predetermined wavelength band by receiving light, and a segment area which is made into a transmission portion which transmits light, a primary light source which shines light of a visible wavelength band onto the luminous wheel, a secondary light source which emits light of a wavelength band which is different from light from the luminescent material layer and light from the primary light source, a collective optical system which collects light from the luminous wheel and the secondary light source to cause them to converge to a same optical path, and a light source control device which controls the emission of light from the light sources.
Owner:CASIO COMPUTER CO LTD

Connecting device for light fixtures

ActiveUS20160018088A1Convenient in mounting and dismountingLarge luminous efficiencyPlanar light sourcesLighting support devicesEngineeringLight fixture
A connecting device for light fixtures has a lens fixing plate, a light fixture assembly, a button, a first spring, a connecting rod and a buckle. The buckle is fixedly connected to the light fixture assembly. A mounting base is disposed on the lens fixing plate. One end of the connecting rod is located in an inner cavity of the mounting base and the other end thereof is extended out from the mounting base. The end of the connecting rod extending out from the mounting base is provided with a boss, and the connecting rod located in the inner cavity of the mounting base is sleeved with the first spring. The button is connected to the end of the connecting rod located in the inner cavity of the mounting base.
Owner:WAC LIGHTING DONGGUAN +1

Ligand-modified quantum dot materials, methods of fabricating liquid crystal display panels and liquid crystal display panels

The present application provides a ligand-modified quantum dot material, a method of fabricating a liquid crystal display panel, and a liquid crystal display panel. The ligand-modified quantum dot material of the present application can occur a polymerization with the ligand-modified quantum dot material under ultraviolet irradiation to form a polymer, while the polymer deposits on a substrate to form a polymer film, which can replace the PI alignment film, so that an alignment process of liquid crystal is simplified, and a cost is economized; simultaneously, display quality of a liquid crystal display panel can be improved by the quantum dots anchored in the polymer film. The method of fabricating the liquid crystal display panel of the present application eliminates the fabricating process of the PI alignment film, the method has simple process and low cost, and a liquid crystal display panel obtained thereby has better display quality. The liquid crystal display panel of the present application utilizes the polymer film, which is obtained by polymerizing the ligand-modified quantum dot material and a polymerizable monomer, to replace the PI alignment film, so as to greatly enhance quality of the panel, and to have a low fabricating cost.
Owner:TCL CHINA STAR OPTOELECTRONICS TECH CO LTD

Ligand-modified quantum dot materials, methods of fabricating liquid crystal display panels and liquid crystal display panels

The present application provides a ligand-modified quantum dot material, a method of fabricating a liquid crystal display panel, and a liquid crystal display panel. The ligand-modified quantum dot material of the present application can occur a polymerization with the ligand-modified quantum dot material under ultraviolet irradiation to form a polymer, while the polymer deposits on a substrate to form a polymer film, which can replace the PI alignment film, so that an alignment process of liquid crystal is simplified, and a cost is economized; simultaneously, display quality of a liquid crystal display panel can be improved by the quantum dots anchored in the polymer film. The method of fabricating the liquid crystal display panel of the present application eliminates the fabricating process of the PI alignment film, the method has simple process and low cost, and a liquid crystal display panel obtained thereby has better display quality. The liquid crystal display panel of the present application utilizes the polymer film, which is obtained by polymerizing the ligand-modified quantum dot material and a polymerizable monomer, to replace the PI alignment film, so as to greatly enhance quality of the panel, and to have a low fabricating cost.
Owner:TCL CHINA STAR OPTOELECTRONICS TECH CO LTD

Organic light emitting diode display panel and manufacturing method thereof

An organic light emitting diode (OLED) display panel includes a thin film transistor (TFT) array substrate; an OLED light-emitting layer; an encapsulation layer; an inducing layer disposed on a light-emitting side of the OLED light-emitting layer; a micro lens array film disposed over the inducing layer; and an organic hydrophobic layer disposed between the inducing layer and the micro lens array film. By providing the organic hydrophobic layer with strong hydrophobic performance, a surface with a large water contact angle is provided for a subsequent formation of the micro lens array film, thereby improving an optical coupling ratio of the micro lens, and improving luminous efficiency of the OLED light emitting layer.
Owner:WUHAN CHINA STAR OPTOELECTRONICS SEMICON DISPLAY TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products