Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

234results about "Linear motor control" patented technology

Methods and apparatus for initializing a planar motor

Methods and apparatus are provided for initializing a planar motor. A magnet array floating above a coil array may reside in one of a definite number of positions upon the introduction of current into the coil array. Torque characteristics of the magnet array are acquired when driving the magnet array with no phase offsets. Phase offsets for driving the magnet array with substantially no yaw can then be determined by analyzing the torque characteristics.
Owner:NIKON CORP

Linear Motor and Handheld Unit

A linear actuator is disclosed, that comprises a stator containing more than one coil, a mover containing more than one magnet, each said magnet separated from the adjacent magnet by a spacer, a power supply operable to provide current to said coils of said stator, at least one magnetic flux sensor, and a controller operable to control the relative motion between said stator and said mover, the controller comprising a module to measure the magnetic flux observed by the sensor and use that as feedback to control the motion of the mover relative to the stator. In a preferred embodiment, this linear actuator is used in a sexual appliance with user control over the linear actuator motion profiles.
Owner:ALEXANDER TAYLOR LAWRENCE

One-phase open-circuit fault-tolerant direct thrust control method for five-phase permanent magnet linear motor

The invention discloses a one-phase open-circuit fault-tolerant direct thrust control method for a five-phase permanent magnet linear motor. Firstly, a Clark transform matrix and an inverse matrix thereof are derived based on fault-tolerant phase current. On the above basis, a stator flux linkage on alpha-beta is derived, a stator virtual flux linkage is defined according to the requirements of acircular stator flux linkage trajectory, and thus the voltage compensation on alpha-beta is derived. The stator actual voltage on the alpha-beta is derived by a modulation function of a voltage sourceinverter, and voltage is combined with voltage compensation and stator current, and a stator virtual flux linkage and thrust are observed by a stator flux observer and a thrust observer. Then statorvirtual target votlage is calculated according to given thrust, a given stator flux linkage amplitude and the observed stator virtual flux linkage and thrust. Finally, the stator actual voltage is calculated by the voltage and the voltage compensation, and the motor is controlled by the voltage by the voltage source inverter. According to the method, a thrust fluctuation caused by a motor failureis suppressed, and more importantly, the dynamic performance and steady state performance are consistent with that in a normal condition.
Owner:JIANGSU UNIV

Versatile Control of a Linear Synchronous Motor Propulsion System

Control of Linear Synchronous Motors involves a number of low level issues of motor control—such as sensing precise position, controlling current in stator windings, and obeying commands from high level controllers—and high level vehicle control—such as stopping and starting, switching and merging, limiting speed and acceleration, synchronizing relative motion, preventing collisions and accidents, and dealing with failures. In most cases there is a master controller that directs vehicles based on simple commands but in other cases it is desirable to allow an external agent to provide more detailed control—such as synchronizing motion between a vehicle and a robot or allowing human operator control. This patent describes a versatile control scheme that allows both simplified high level control and, when or where necessary, control by an external agent. The result is a transport system and method that provides efficient and precise movement of vehicles on a guideway.
Owner:ROCKWELL AUTOMATION

Linear actuator and camera shake correction mechanism

A linear actuator including a multipolar magnet configured such that an S pole and an N pole are linearly aligned in an alternating manner, coil body having a plurality of separate coil units integrally arranged in a lengthwise direction of the coil body being provided to be movable relatively with respect to the multipolar magnet, a magnetic sensor that detects a position of the coil body along the lengthwise direction of the coil body with respect to the multipolar magnet, and an electrifying control circuit that individually controls currents to be supplied to the plurality of coil units based on the position of the coil body detected by the magnet sensor.
Owner:PENTAX RICOH IMAGING CO LTD

Electric Motor, Drive System Employing Multiple Electric Motors, and Method for Controlling the Same

The motor according to one aspect of the present invention has an output waveform correcting unit for correcting the waveform of the output signal of a magnetic sensor during operation of the electric motor. ID codes for identification purposes are assigned respectively to a plurality of magnetic sensors. The output waveform correcting unit receives, from an external device, output waveform correction values for the magnetic sensors together with the ID codes, and stores the output waveform correction values for the magnetic sensors in memory. The drive system according to another aspect of the present invention has a plurality of electric motors, and a system controller connected to the plurality of motors via a shared communication line. Each electric motor has an identification code register that stores an identification code for identifying each electric motor. The system controller has an individual control mode in which operation of individual motors is controlled by transmitting commands to individual electric motors together with identification codes via the shared communication line.
Owner:PARKSIDE IP LLC

Zero ripple linear motor system

The present invention relates systems and methods for compensating for errors associated with a linear motion system. The systems and methods determines one or more errors associated with the linear motion system and adjusts or corrects an input drive signal associated with the linear motion system to compensate for the one or more errors. The one or more errors of the linear motion system can include cogging errors and ripple errors. The one or more errors can be measured using a measurement system or the one or more errors can be associated with selectable coefficients or parameters, such as standard errors, or device type errors stored in a library.
Owner:ROCKWELL AUTOMATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products