Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1243 results about "Voltage sensing" patented technology

A voltage sensing circuit is a circuit intended to carry minimal to no current so there is minimal voltage drop in this measurement circuit. The voltage sensing circuit should really be considered a voltage correction circuit or a voltage drop compensation circuit.

OLED display with aging compensation

An organic light-emitting diode (OLED) display having addressable pixels on a substrate, the pixels having performance attributes, and a control circuit for controlling the pixels of the display device, includes one or more OLED pixels; an OLED reference pixel located on a substrate and connected to the control circuit, the OLED reference pixel having the same performance attributes as the one or more OLED pixels, the OLED reference pixel having a voltage sensing circuit including a transistor connected to one of the terminals of the OLED reference pixel for sensing the voltage across the OLED reference pixel to produce a voltage signal representing the voltage across the OLED reference pixel; a measurement circuit connected to the voltage signal to produce an output signal representative of the performance attributes of the OLED reference pixel; an analysis circuit connected to the measurement circuit to receive the output signal, compare the performance attributes with predetermined performance attributes, and produce a feedback signal in response thereto; and the control circuit being responsive to the feedback signal to compensate for changes in the output of the OLED pixels.
Owner:GLOBAL OLED TECH

Method and apparatus for maintaining a constant load current with line voltage in a switch mode power supply

A power supply including a regulation circuit that maintains an approximately constant load current with line voltage. An example circuit includes a switch including first, second and third terminals. The first terminal is coupled or decoupled to the second terminal in response to a control signal received at the third terminal. Voltage sense circuitry is included and is coupled to sense a voltage drop across the switch. The voltage drop is representative of a current in the switch during an on time of the switch. The voltage sense circuitry has a variable current limit threshold that increases between a first level and a second level during the on time of the switch. The control signal is responsive to the variable current limit threshold to regulate a power supply with an output characteristic having an approximately constant output voltage below an output current threshold and an approximately constant output current below an output voltage threshold.
Owner:POWER INTEGRATIONS INC

Nonvolatile semiconductor memory having three-level memory cells and program and read mapping circuits therefor

A memory uses multiple threshold levels in a memory cell that are not a power of two, and further uses a cell mapping technique wherein the read mapping is only a partial function The domain of read states for a single three-level memory cell, for example, has three states, but only two of them can be uniquely mapped to a bit. The domain of read states for two three-level memory cell, for example, has nine states, but only eight of them can be uniquely mapped to three bits. Although the read mapping is only partial, the voltage margin for the three-level memory cells is larger that the voltage margin available in the commonly used four-level memory cells. This increased voltage margin facilitates memory cell threshold voltage sensing, thereby increasing the reliability of the memory. Memory reliability may be further improved by increasing the voltage margin between the memory cell 0 state and the 1 state relative to the voltage margin between the 1 state and the 2 state, which more effectively accommodates charge loss from the 0 state through electron leakage. Asymmetrical read and program mapping may also be used to improve read reliability in the presence of ground noise or VCC noise.
Owner:WINBOND ELECTRONICS CORP

Linear solid-state lighting with voltage sensing mechanism free of fire and shock hazards

A linear light-emitting diode (LED)-based solid-state lamp using a novel voltage sensing and control mechanism operates normally in both single-ended and double-ended luminaire fixtures. The voltage sensing and control mechanisms automatically detect supply source configuration in the fixture and make proper management so that the linear LED lamp works in any fixtures without operational uncertainty or risk of fire. When used with shock protection switches on the two lamp bases at two opposite ends, the universal lamp fully protects a person from possible electric shock during initial installation and re-lamping.
Owner:ALEDDRA INC

Bridgeless boost converter with PFC circuit

A boost type power supply circuit for providing a DC output voltage comprising first and second semiconductor switches coupled between respective input lines and a common connection; an AC input voltage from an AC source being supplied across the input lines; first and second diodes coupled in series with respective ones of the switches; third and fourth diodes coupled across respective ones of the switches in a free-wheeling relationship with the switches; an inductance coupled in at least one of the input lines; a controller for controlling the conduction times of the switches by providing a pulse width control signal to each of the switches; wherein the controller turns on at least one of the switches during a positive half cycle of the AC voltage to allow energy storage in the inductance and turns off the at least one switch to allow the energy stored in the inductance to be supplied to an attached load through one of the first and second diodes and one of the third or fourth diodes; and the controller turns on at least one of the switches during a negative half cycle of the AC voltage to allow energy storage in the inductance and turns off at least one switch to allow the energy stored in the inductance to be supplied to the attached load through one of the first and second diodes and one of the third and fourth diodes. The controller determines an on-time and an off-time of a pulse of the pulse width modulated control signal during each half cycle of the AC voltage, the on-time and off-time of the pulse being controlled to regulate said output voltage and to provide power factor correction of said AC input voltage, based on either voltage sensing or current sensing.
Owner:INTERNATIONAL RECTIFIER COEP

High efficiency power supply for LED lighting applications

InactiveUS20070120506A1Accurate current regulationHigh efficiency operating pointElectrical apparatusElectroluminescent light sourcesVoltage regulationEffect light
A power supply for plural loads coupled in parallel comprises a voltage regulator, a plurality of current regulators, and an error control circuit. The voltage regulator provides a common output voltage to the plural loads. The voltage regulator comprises a sensor circuit providing a voltage sense signal corresponding to the output voltage, which provides feedback to regulate the output voltage at a selected level. The plurality of current regulators are coupled to respective ones of the plural loads. Each of the plurality of current regulators regulates current drawn by respective ones of the plural loads to within a desired regulation range. The plurality of current regulators each further provide a respective error signal corresponding to an ability to remain within the desired regulation range. The error control circuit is operatively coupled to the voltage regulator and to the plurality of current regulators. The error control circuit receives the error signals from the plurality of current regulators and provides a common error signal to the voltage regulator. The voltage regulator thereby changes the selected level of the output voltage in response to the common error signal. Accordingly, the selected level of the output voltage remains at a minimum voltage necessary to keep the plural loads in the desired regulation range.
Owner:SEMTECH CORP

High efficiency power supply for LED lighting applications

A power supply for plural loads coupled in parallel comprises a voltage regulator, a plurality of current regulators, and an error control circuit. The voltage regulator provides a common output voltage to the plural loads. The voltage regulator comprises a sensor circuit providing a voltage sense signal corresponding to the output voltage, which provides feedback to regulate the output voltage at a selected level. The plurality of current regulators are coupled to respective ones of the plural loads. Each of the plurality of current regulators regulates current drawn by respective ones of the plural loads to within a desired regulation range. The plurality of current regulators each further provide a respective error signal corresponding to an ability to remain within the desired regulation range. The error control circuit is operatively coupled to the voltage regulator and to the plurality of current regulators. The error control circuit receives the error signals from the plurality of current regulators and provides a common error signal to the voltage regulator. The voltage regulator thereby changes the selected level of the output voltage in response to the common error signal. Accordingly, the selected level of the output voltage remains at a minimum voltage necessary to keep the plural loads in the desired regulation range.
Owner:SEMTECH CORP

Novel Utilization of a Multifunctional Pin Combining Voltage Sensing and Zero Current Detection to Control a Switched-Mode Power Converter

An embodiment of the invention relates to a power converter including an inductor coupled in series with a power switch and a resistor coupled to a winding of the inductor. Input and output power converter voltages including an input brownout condition or an output overvoltage condition are estimated, and the output voltage may be regulated, by sensing a current in the resistor. An input current waveform can thereby be controlled to replicate substantially the input voltage waveform. The controller adjusts an on time and terminates an off time of the power switch by sensing respectively a current and a change of current in the resistor. The controller may sense a current flowing in the resistor to select a line voltage range of the input voltage to the power converter. The controller may estimate an input current to the power converter employing the current flowing in the resistor.
Owner:INFINEON TECH AUSTRIA AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products