Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

145 results about "Triphenylene" patented technology

In chemistry, the organic compound triphenylene is a flat polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings. Triphenylene can be isolated from coal tar. It is also made synthetically by synthesis and trimerization of benzyne. One molecule of triphenylene has delocalized 18-π-electron systems based on a planar structure. It has the molecular formula C₁₈H₁₂.

Organic electroluminescence device and material for organic electroluminescence device

An organic electroluminescence device includes: a cathode; an anode; and a single-layered or multilayered organic thin-film layer provided between the cathode and the anode. In the organic electroluminescence device, the organic thin-film layer includes at least one emitting layer, and the at least one emitting layer includes at least one phosphorescent material and a host material represented by the following Formula (1).Ra—Ar1—Ar2—Rb   (1)In Formula (1):Ra and Rb each represent a substituted or non-substituted benzene ring or a substituted or non-substituted condensed aromatic hydrocarbon ring selected from a group consisting of a naphthalene ring, a chrysene ring, a fluoranthene ring, a triphenylene ring, a phenanthrene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzotriphenylene ring, a benzochrysene ring and a picene ring; andAr1 and Ar2 each represent a substituted or non-substituted benzene ring or a substituted or non-substituted condensed aromatic hydrocarbon ring selected from a group consisting of a naphthalene ring, a chrysene ring, a fluoranthene ring, a triphenylene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzotriphenylene ring, a benzochrysene ring and a picene ring.
Owner:IDEMITSU KOSAN CO LTD

Organic electroluminescence device and material for organic electroluminescence device

An organic electroluminescence device includes: a cathode; an anode; and a single-layered or multilayered organic thin-film layer provided between the cathode and the anode. The organic thin-film layer includes at least one emitting layer. The at least one emitting layer contains at least one phosphorescent material and a host material represented by the following formula (1).Ra-Ar1-Rb  (1)In the formula, Ar1, Ra and Rb each represent a substituted or unsubstituted benzene ring or a condensed aromatic hydrocarbon ring selected from a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted chrysene ring, a substituted or unsubstituted fluoranthene ring, a substituted or unsubstituted phenanthrene ring, a substituted or unsubstituted benzophenanthrene ring, a substituted or unsubstituted dibenzophenanthrene ring, a substituted or unsubstituted triphenylene ring, a substituted or unsubstituted benzo[a]triphenylene ring, a substituted or unsubstituted benzochrysene ring, a substituted or unsubstituted benzo[b]fluoranthene ring and a substituted or unsubstituted picene ring. Substituents for Ra and Rb are not aryl groups.
Owner:IDEMITSU KOSAN CO LTD

Electrolytic solution for non-aqueous type battery and non-aqueous type secondary battery

InactiveUS20030118912A1Excellent in high-temperature storage characteristicReduced responseCell electrodesOrganic electrolyte cellsNon aqueous electrolytesTerphenyl
In a rechargeable non-aqueous electrolyte secondary battery using positive electrodes, negative electrodes and a non-aqueous electrolytic solution, additives to the electrolytic solution are used in combination, preferably in combination of at least two compounds selected from o-terphenyl, triphenylene, cyclohexylbenzene and biphenyl, and thus there are provided batteries excellent in safety and storage characteristics.
Owner:PANASONIC CORP +1

Organic electroluminescence device and material for organic electroluminescence device

An organic electroluminescence device includes: a cathode; an anode; and a single-layered or multilayered organic thin-film layer provided between the cathode and the anode. In the organic electroluminescence device, the organic thin-film layer includes at least one emitting layer, and the at least one emitting layer contains: at least one phosphorescent material; and a host material represented by the following formula (1).Ra—Ar1—Ar2—Rb   (1)In the formula, Ar1, Ar2, Ra and Rb each represent a substituted or unsubstituted benzene ring or a substituted or unsubstituted condensed aromatic hydrocarbon group selected from a group consisting of a naphthalene ring, a chrysene ring, a fluoranthene ring, a triphenylene ring, a phenanthrene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzotriphenylene ring, a benzochrysene ring, a picene ring and a benzo[b]fluoranthene ring.
Owner:IDEMITSU KOSAN CO LTD

Indenotriphenylene-based iridium complexes for organic electroluminescence device

The present invention discloses an indenotriphenylene-based iridium complexes is represented by the following formula (1), the organic EL device employing the derivative as light emitting dopant of emitting layer can display good performance like as lower driving voltage and power consumption, increasing efficiency and half-life time.wherein A ring represents an imidazole, a pyridine, a quinoline and an isoquinoline, X1-X2 represents a bidentate ligand, and m, n and R1 to R4 are the same definition as described in the present invention.
Owner:LUMINESCENCE TECH

Novel organic electroluminescent compounds and organic electroluminescent device using the same

Organic electroluminescent compounds comprising a triphenylene conjugated to a five-ring fused heterocyclic system, as depicted in formula 1 are provided. Also provided is an organic electroluminescent device comprising these compounds. The organic electroluminescent compounds disclosed herein exhibit good luminous efficiency and excellent material life. They can be used to manufacture OLED devices very superior in terms of operating life and which consume less power due to improved power efficiency.
Owner:ROHM & HAAS ELECTRONICS MATERIALS LLC

Nanometer organic microporous polymer and method for adsorbing heavy metal in drinking water

The invention belongs to the field of an organic microporous polymer, and particularly relates to a nanometer organic microporous polymer and a method for adsorbing heavy metal in drinking water. The nanometer organic microporous polymer provided by the invention has a structure shown as a formula (I) shown in description, and comprises a condensed polycyclic aromatic structure unit; the nanometer organic microporous polymer is prepared from triquinoyl octahydrate, 4,5-dichloro-1,2 phenylenediamine and 2,3,6,7,10,11 hexahydroxy triphenylene through reaction; the nanometer organic microporous polymer is fully organic aromatic framework solid capable of being highly recovered; no metal ions are contained; the synthesis does not need a transition metal catalyst; no halogen-containing by-products are generated; green and environment-friendly effects are achieved; a very important function is provided for the green and sustainable development technology. Experiments prove that the organic microporous polymer provided by the invention can fast adsorb heavy metal materials in the drinking water, so that the heavy metal content is lower than the drinkable limit; the nanometer organic microporous polymer scan be widely applied to drinking water purifications.
Owner:GUANGDONG UNIV OF TECH

1, 5, 9-trisubstituted coronene compound and synthesis method thereof

The present invention relates to a 1, 5, 9-trisubstituted coronene compound and a synthesis method thereof. The structural formula of the compound is shown in img file = 'dest _ path _ image 001. TIF 'wi = '109 'he = '108', wherein R represents H, C1-C18 alkyl, phenyl, 4-methylphenyl, 4-methoxy phenyl, benzyl, cyclohexyl, 4-trifluoromethylphenyl, thiophene, furan and the like. According to the technical scheme of the invention, the easily prepared 1, 5, 9-triamido triphenylene is subjected to diazotization and halogenation reaction to obtain the tri-halogenated triphenylene. After that, the tri-halogenated triphenylene is subjected to Sonogashira reaction with various alkynes to generate atriyne-triphenylene compounds. Finally, through the metal-catalyzed reaction and the cyclization reaction under the effect of an organic base, various 1, 5, 9-trisubstituted coronene compounds, novel in structure, can be obtained. According to the technical scheme of the invention, raw materials are easy for mass preparation. Meanwhile, the synthesis step is relatively short and the operation is convenient. The obtained trisubstituted coronene compound is good in thermal stability and chemical stability, and the trisubstituted coronene emits the relatively strong fluorescence within the range of 420-550 nm according to the fluorescence emission spectrum of the trisubstituted coronene compound. Therefore, the trisubstituted coronene is an excellent fluorescent material for preparing UV ultraviolet charge-coupled devices (UV-CCD) and organic light-emitting diodes (OLEDs), and has a wide application prospect in the field of electronic materials.
Owner:SHANGHAI UNIV

Triphenylene derivate and organic electroluminescence device

The invention provides a triphenylene derivate and an organic electroluminescence device, and belongs to the technical field of organic electroluminescence materials. The compound has the structure asshown in formula (I). According to the triphenylene derivate, triphenylene and benzimidazole are condensed, so that the obtained material is high in glass transition temperature and is capable of avoiding crystalizing; the synthesizing method is simple, and easy to operate; the organic electroluminescence device prepared through the triphenylene derivate is high in luminescence efficiency and lowin driving voltage.
Owner:CHANGCHUN HYPERIONS TECH CO LTD

Compound, material for organic electroluminescent elements, organic electroluminescent element and electronic device

Provided are: an organic electroluminescent element which exhibits higher performance and has particularly good driving voltage and external quantum efficiency, while having a longer service life; and an electronic device which is provided with this organic electroluminescent element. Also provided is a compound which enables the achievement of the organic electroluminescent element and the electronic device. Specifically provided are: a compound of a specific structure having a triphenylene skeleton; an organic electroluminescent element which uses this compound; and an electronic device which is provided with this organic electroluminescent element.
Owner:IDEMITSU KOSAN CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products