Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

79 results about "Cell-Free Nucleic Acids" patented technology

Nucleic acids (DNA or RNA) found circulating in SERUM; PLASMA; or other BODY FLUIDS.

Stabilization of RNA in intact cells within a blood sample

A method for preserving and processing nucleic acids located within a blood sample is disclosed, wherein a blood sample containing nucleic acids is treated to reduce both blood cell lysis and nuclease activity within the blood sample. The treatment of the sample aids in increasing the integrity and amount of cellular nucleic acids that can be identified and tested while avoiding contamination of the isolated nucleic acids with cell-free nucleic acids.
Owner:STRECK INC

Method for isolating cell free apoptotic or fetal nucleic acids

The present invention provides methods for isolating cell free nucleic acid, e.g., apoptotic or fetal nucleic acids and methods of detecting neoplastic cells or identifying the genetic composition of a fetus. The invention also provides magnetic particles comprising an anti-DNA antibody, and kits comprising the magnetic particles.
Owner:NOVARTIS VACCINES & DIAGNOSTICS INC

Single molecule spectroscopy for analysis of cell-free nucleic acid biomarkers

The present invention relates, e.g., to a method for detecting a nucleic acid molecule of interest in a sample comprising cell-free nucleic acids, comprising fluorescently labeling the nucleic acid molecule of interest, by specifically binding a fluorescently labeled nanosensor or probe to the nucleic acid of interest, or by enzymatically incorporating a fluorescent probe or dye into the nucleic acid of interest, illuminating the fluorescently labeled nucleic acid molecule, causing it to emit fluorescent light, and measuring the level of fluorescence by single molecule spectroscopy, wherein the detection of a fluorescent signal is indicative of the presence of the nucleic acid of interest in the sample.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Identification and use of circulating nucleic acids

Disclosed herein are polynucleotide adaptors and methods of use thereof for identifying and analyzing nucleic acids, including cell-free nucleic acids from a patient sample. Also disclosed herein are methods of using the adaptors to detect, diagnose, or determine prognosis of cancers.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Sequencing analysis of circulating DNA to detect and monitor autoimmune diseases

Systems, methods, and apparatuses are provided for diagnosing auto-immune diseases such as systemic lupus erythematosus (SLE) based on the sizes, methylation levels, and / or genomic characteristics of circulating DNA molecules. Patients provide blood or other tissue samples containing cell-free nucleic molecules for analysis. Massively parallel and / or methylation-aware sequencing can be used to determine the sizes and methylation levels of individual DNA molecules and identify the number of molecules originating from different genomic regions. A level of SLE can be estimated based on: the amount of molecules having sizes below a threshold value; the methylation level(s) of the entire genome or portions of the genome; correlations between the sizes and methylation levels of DNA molecules; and / or comparing the representation of DNA molecules in each of a plurality of genomic regions with a reference value for that region, and determining an amount of genomic regions having increased or decreased measured genomic representation.
Owner:THE CHINESE UNIVERSITY OF HONG KONG

Non-invasive blood based monitoring of genomic alterations in cancer

The invention provides methods to monitor cell free nucleic acids. The method comprises obtaining a plasma sample from a subject known to have a cancer characterized by a pair of mutually exclusive mutations specific to the cancer; isolating cell free nucleic acids from the plasma sample obtained from the subject; measuring the amount a housekeeping gene and/or total DNA in the cell free nucleic acids isolated from the plasma sample to confirm that the amount of housekeeping gene and/or total DNA in the sample is within a selected range; measuring the amount of a first of the pair of mutually exclusive mutations specific to the cancer in the cell free nucleic acids isolated from the plasma sample; and indicating in a report that the subject has the first mutation when (a) the amount of the housekeeping gene and/or total DNA in the cell free nucleic acids isolated from the plasma sample is within the selected range and (b) the amount of the first mutation is increased as compared to a control amount, wherein the control amount is determined by measuring the apparent amount of the first mutation in control cell free nucleic acids isolated from plasma samples obtained from control subjects known to have the second of the pair of mutually exclusive mutations specific to the cancer using measuring conditions substantially the same as those used to measure the amount of the first mutation in the cell free nucleic acids isolated from the plasma sample from the subject.
Owner:DANA FARBER CANCER INST INC

Site-specific noise model for targeted sequencing

A processing system uses a Bayesian inference based model for targeted sequencing or variant calling. In an embodiment, the processing system determines first depths and first alternate depths of first sequence reads from a cell free nucleic acid sample of a subject. The processing system determines second depths and second alternate depths of second sequence reads from a genomic nucleic acid sample of the subject. The processing system determines likelihoods of true alternate frequency of the cell free nucleic acid sample and of the genomic nucleic acid sample. Using the first likelihood, the second likelihood, and one or more parameters, the processing system determines a probability that the true alternate frequency of the cell free nucleic acid sample is greater than a function of the true alternate frequency of the genomic nucleic acid sample.
Owner:GRAIL LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products