Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

59 results about "Adaptive voltage scaling" patented technology

Adaptive Voltage Scaling (AVS) is a closed-loop dynamic power minimization technique that adjusts the voltage supplied to a computer chip to match the chip's power needs during operation. Many computer chips, especially those in mobile devices or Internet of things devices are constrained by the power available (for example, they are limited to the power stored in a battery) and face varying workloads. In other situations a chip may be constrained by the amount of heat it is allowed to generate. In addition, individual chips can vary in their efficiency due to many factors, including minor differences in manufacturing conditions. AVS allows the voltage supplied to the chip, and therefore its power consumption, to be continuously adjusted to be appropriate to the workload and the parameters of the specific chip. This is accomplished by integrating a device that monitors the performance of the chip (a hardware performance manager) into the chip, which then provides information to a power controller.

Adaptive voltage scaling digital processing component and method of operating the same

There is disclosed a digital circuit comprising a digital processing component, an adjustable power supply and power supply adjustment circuitry. The digital processing component is capable of operating at a plurality of selected clock frequencies, wherein a maximum delay time of a critical path in the digital processing component is determined by a level of a power supply, VDD, of the digital processing component. The adjustable power supply is capable of supplying VDD to the digital processing component. The power supply adjustment circuitry is operable to receive a first selected clock signal and adjusts the level of VDD such that the maximum delay time of the critical path of the digital processing component is less than a pulse-width duration between a first clock edge of the first selected clock signal and a second clock edge of the first selected clock signal immediately following the first clock edge.
Owner:NAT SEMICON CORP

System and method for providing multi-point calibration of an adaptive voltage scaling system

A system and method is disclosed for providing multi-point calibration of an adaptive voltage scaling (AVS) system. A plurality of Reference Calibration Codes (RCCs) within a multi-point calibration table is provided. Each code is associated with one of the clock frequencies of the adaptive voltage scaling (AVS) system. The present invention provides multi-point calibration by calibrating a Reference Calibration Code (RCC) for each operating point (clock frequency) of the adaptive voltage scaling (AVS) system.
Owner:NAT SEMICON CORP

Semi-adaptive voltage scaling for low-energy digital vlsi-design

A semi-adaptive voltage scaling method and device for determining minimal supply voltages for digital electronic semiconductor circuitry, e.g., microprocessors, of electronic devices under production testing and “real” operating conditions. The SAVS operates in a closed-loop during a production test phase of the circuitry and in an open-loop mode in an application (operation) phase of the semiconductor circuitry. During production testing, a lowermost level of the supply voltage for the semiconductor circuitry is determined at one single defined temperature at which operating specifications of the circuit are met. The lowermost level is stored in a dedicated electronic memory of the circuitry together with temperature dependent parameters. Afterwards, when the digital electronic circuitry is operated in a “real” application, e.g., a mobile phone, the device and method reads the previously measured and proven data from the memory and regenerates the minimum level of supply voltage for the circuitry, taking into account the actual temperature of the application. As a result, the digital semiconductor circuitry in the “real” application is supplied with a minimum level of supply voltage, whereby specified parameters of the circuitry are met. Thus, a power consumption of the circuitry is advantageously reduced to a minimum.
Owner:ST ERICSSON SA

System and method for designing integrated circuits that employ adaptive voltage scaling optimization

The represent invention relates to a design process optimization system and method for designing a circuit which may be an integrated circuit (IC) employing adaptive voltage and scaling optimization (AVSO). In one embodiment, the system includes: (1) a process-voltage-temperature (PVT) libraries database configured to contain PVT libraries of PVT characterizations of devices of cells from which the circuit is to be constructed, and (2) a PVT library selector coupled to the PVT libraries database and configured to receive a selection indicating a supplemental objective and respond to the selection by selecting one of the PVT libraries from the PVT libraries database, a timing signoff tool later employing at most two corners from the one of the PVT libraries to perform a timing signoff with respect to the circuit.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

ADAPTIVE VOLTAGE SCALING SYSTEM FOR OUT OF CONTEXT FUNCTIONAL SAFETY SoC

The optimal operating voltage of a complex SoC may be influenced by process variations. The operating voltages may be dynamically adjusted for optimal performance. These adjustments require a dynamic reconfiguration of the voltage monitoring thresholds in the power on reset circuitry of the SoC.
Owner:TEXAS INSTR INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products