Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

100 results about "Respiratory phase" patented technology

Expiratory phase. the portion of the respiratory cycle that involves exhalation, or moving air out of the lungs. In normal circumstances, it is passive.

Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles in free space

A non-invasive ventilation system may include an interface. The interface may include at least one gas delivery jet nozzle adapted to be positioned in free space and aligned to directly deliver ventilation gas into an entrance of a nose. The at least one gas delivery jet nozzle may be connected to a pressurized gas supply. The ventilation gas may entrain ambient air to elevate lung pressure, elevate lung volume, decrease the work of breathing or increase airway pressure, and wherein the ventilation gas is delivered in synchrony with phases of breathing. A support for the at least one gas delivery jet nozzle may be provided. A breath sensor may be in close proximity to the entrance of the nose. A patient may spontaneous breathe ambient air through the nose without being impeded by the interface.
Owner:BREATHE TECHNOLOGIES INC

Ventilator adaptable for use with either a dual-limb circuit or a single-limb circuit

A ventilator of the present invention includes a housing, a gas flow generator disposed in the housing, a gas outlet port provided on an exterior surface of the housing, and a first conduit coupling the gas flow generator to the gas outlet port. A gas inlet port is also provided on an exterior surface of the housing. A second conduit couples the gas inlet port to a first exhaust valve in the housing that regulates a flow of exhaust gas from the second conduit. A second exhaust valve in the housing is coupled to the first conduit and regulates a flow of exhaust gas from the first conduit. A controller coupled to second exhaust valve causes the second exhaust valve to change a degree of flow restriction based on a respiratory phase of a patient coupled to the ventilator when the ventilator is operating in a single-limb ventilation configuration.
Owner:PHILIPS RS NORTH AMERICA LLC

Method and Apparatus for Phrenic Nerve Activation Detection with Respiration Cross-Checking

The present invention concerns phrenic nerve activation detection algorithms for characterization of phrenic nerve activation and phrenic nerve activation avoidance in cardiac pacing therapy.Various embodiments concern receiving a respiration signal indicative of respiratory activity of the patient, identifying respiratory phases based on the respiration signal, delivering cardiac pacing pulses within each of the identified respiratory phases, receiving a phrenic nerve activation signal indicative of activation of the patient's phrenic nerve, analyzing the phrenic nerve stimulation signal to determine if one or more of the pacing pulses activated the phrenic nerve of the patient, and determining if at least one of the delivered pacing pulses activated the phrenic nerve of the patient based on the phrenic nerve activation signal indicating activation of the patient's phrenic nerve associated with delivery of the at least one cardiac pacing pulse.
Owner:CARDIAC PACEMAKERS INC

Patient-ventilator synchronization using dual phase sensors

An improved ventilator which delivers ventilatory support that is synchronized with the phase of the patients respiratory efforts and guarantees a targeted minimum ventilation. Improved synchronization is achieved through an instantaneous respiratory phase determination process based upon measured respiratory airflow as well as measured respiratory effort using an effort sensor accessory, preferably a suprasternal notch sensor. The ventilator processes a respiratory airflow signal, a respiratory effort signal and their respective rates of change to determine a phase using standard fuzzy logic methods. A calculated pressure amplitude is adjusted based upon the calculated phase and a smooth pressure waveform template to deliver synchronized ventilation.
Owner:RESMED LTD

Method for retrospectively classifying chest or abdomen computed tomography (CT) images based on respiratory phase

The invention relates to a method for retrospectively classifying chest or abdomen computed tomography (CT) images based on a respiratory phase. The method comprises the following steps of: measuring a preset respiratory cycle and setting parameters of CT scanning; performing movie-mode CT scanning so as to obtain images and endowing each image with a bed number, a layer number and a phase number; performing threshold value segmentation on each image so as to obtain the surface profile of a human body; establishing a profile matrix of each phase by using the height values of pixel points of the surface profile of the human body; accumulating the height values of elements in the profile matrix of each phase and picking out a group of images which correspond to a maximum accumulated sum value from each bed, wherein the group of images serve as an image array of a complete cycle; performing cubic spline smooth fitting on each row of vectors of a profile matrix between two phases by taking any bed as a reference bed, calculating the distance sum of profile height difference between adjacent layers of two phases and picking out image sequence numbers with the minimum distance sum so as to establish a classification matrix; and selecting a classification matrix with the minimum retrospective cycle difference degree, wherein the classification matrix is taken as a retrospective classification result.
Owner:SOUTHERN MEDICAL UNIVERSITY

Implementation method and equipment for 4D radiotherapy plan with respiratory compensation

The invention discloses an implementation method and equipment for a 4D radiotherapy plan with respiratory compensation. The implementation method includes steps that inputting 4D medical images of different respiratory phases of a patient, and sketching a target region of each respiratory phase and a tissue outline of an organ at risk; designing the 4D radiotherapy plan; monitoring the respiratory phases of the patient and forecasting the respiratory phase change of the patient; dispatching field parameters corresponding to the respiratory phases; controlling a medical X-ray machine to form a corresponding field to finish the corresponding beam irradiation action; judging whether the 4D radiotherapy is ended, if so, forming a respiration curve diagram for the 4D radiotherapy of the patient; calculating the actual dosage distribution accepted by the patient in the radiotherapy; comparing the calculated actual dosage distribution with the planed dosage distribution of the 4D radiotherapy plane, and determining whether optimizing the subsequent 4D radiotherapy plan according to the comparative result. The implementation method and equipment for the 4D radiotherapy plan with the respiratory compensation is capable of accurately determining a four-dimensional radiotherapy target.
Owner:大连现代医疗设备科技有限公司

Automatic fresh gas control system

An anesthesia system is disclosed herein. The anesthesia system includes a pneumatic circuit comprising an inspiratory limb, an expiratory limb, and a sensor. The anesthesia system also includes an anesthesia machine comprising a controller. The controller is operatively connected to the sensor, and is configured to identify a respiratory phase of the patient based on feedback from the sensor. The controller is further configured to regulate the flow rate of a fresh gas in response to the identified respiratory phase.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products