Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

269 results about "Multipotent cell" patented technology

Multipotent cells are found in many, but not all human cell types. Multipotent cells have been found in cord blood, adipose tissue, cardiac cells, bone marrow, and mesenchymal stem cells (MSCs) which are found in the third molar.

Defined media for stem cell culture

Stem cells, including mammalian, and particularly primate primordial stem cells (pPSCs) such as human embryonic stem cells (hESCs), hold great promise for restoring cell, tissue, and organ function. However, cultivation of stem cells, particularly undifferentiated hESCs, in serum-free, feeder-free, and conditioned-medium-free conditions remains crucial for large-scale, uniform production of pluripotent cells for cell-based therapies, as well as for controlling conditions for efficiently directing their lineage-specific differentiation. This instant invention is based on the discovery of the formulation of minimal essential components necessary for maintaining the long-term growth of pPSCs, particularly undifferentiated hESCs. Basic fibroblast growth factor (bFGF), insulin, ascorbic acid, and laminin were identified to be both sufficient and necessary for maintaining hESCs in a healthy self-renewing undifferentiated state capable of both prolonged propagation and then directed differentiation. Having discerned these minimal molecular requirements, conditions that would permit the substitution of poorly-characterized and unspecified biological additives and substrates were derived and optimized with entirely defined constituents, providing a “biologics”-free (i.e., animal-, feeder-, serum-, and conditioned-medium-free) system for the efficient long-term cultivation of pPSCs, particularly pluripotent hESCs. Such culture systems allow the derivation and large-scale production of stem cells such as pPSCs, particularly pluripotent hESCs, in optimal yet well-defined biologics-free culture conditions from which they can be efficiently directed towards a lineage-specific differentiated fate in vitro, and thus are important, for instance, in connection with clinical applications based on stem cell therapy and in drug discovery processes.
Owner:THE BURNHAM INST

Defined media for pluripotent stem cell culture

Stem cells, including mammalian, and particularly primate primordial stem cells (pPSCs) such as human embryonic stem cells (hESCs), hold great promise for restoring cell, tissue, and organ function. However, cultivation of stem cells, particularly undifferentiated hESCs, in serum-free, feeder-free, and conditioned-medium-free conditions remains crucial for large-scale, uniform production of pluripotent cells for cell-based therapies, as well as for controlling conditions for efficiently directing their lineage-specific differentiation. This instant invention is based on the discovery of the formulation of minimal essential components necessary for maintaining the long-term growth of pPSCs, particularly undifferentiated hESCs. Basic fibroblast growth factor (bFGF), insulin, ascorbic acid, and laminin were identified to be both sufficient and necessary for maintaining hESCs in a healthy self-renewing undifferentiated state capable of both prolonged propagation and then directed differentiation. Having discerned these minimal molecular requirements, conditions that would permit the substitution of poorly-characterized and unspecified biological additives and substrates were derived and optimized with entirely defined constituents, providing a “biologics”-free (i.e., animal-, feeder-, serum-, and conditioned-medium-free) system for the efficient long-term cultivation of pPSCs, particularly pluripotent hESCs. Such culture systems allow the derivation and large-scale production of stem cells such as pPSCs, particularly pluripotent hESCs, in optimal yet well-defined biologics-free culture conditions from which they can be efficiently directed towards a lineage-specific differentiated fate in vitro, and thus are important, for instance, in connection with clinical applications based on stem cell therapy and in drug discovery processes.
Owner:THE BURNHAM INST

Pluripotent stem cells derived without the use of embryos or fetal tissue

This invention provides a method for deriving precursors to pluripotent non-embryonic stem (P-PNES) and pluripotent non-embryonic stem (PNES) cell lines. The present invention involves nuclear transfer of genetic material from a somatic cell into an enucleated, zona pellucida free human ooplastoid having a reduced amount of total cytoplasm. The present invention provides a new source for obtaining human and other animal pluripotent stem cells. The source utilizes as starting materials an oocyte and a somatic cell as the starting materials but does not require the use, creation and/or destruction of embryos or fetal tissue and does not in any way involve creating a cloned being. The oocyte never becomes fertilized and never develops into an embryo. Rather, portions of the oocyte cytoplasm are extracted and combined with the nuclear material of individual mature somatic cells in a manner that precludes embryo formation. Murine, bovine, and human examples of the procedure are demonstrated. Subsequently, the newly constructed P-PNES cells are cultured in vitro and give rise to PNES cells and cell colonies. Methods are described for culturing the P-PNES cells to yield purified PNES cells which have the ability to differentiate into cells derived from mesoderm, endoderm, and ectoderm germ layers. Methods are described for maintaining and proliferating PNES cells in culture in an undifferentiated state. Methods and results are described for analysis and validation of pluripotency of PNES cells including cell morphology, cell surface markers, pluripotent tumor development in SCID mouse, karyotyping, immortality in in vitro culture.
Owner:STEMA

Pluripotent cell lines and methods of use thereof

Methods of generating cell lines with a sequence variation or copy number variation of a gene of interest, methods of use thereof, and cell lines with a sequence variation or copy number variation of a gene of interest are provided.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV +1

Methods of Culturing Retinal Pigmented Epithelium Cells, Including Xeno-Free Production, RPE Enrichment, and Cryopreservation

The production of high quality retinal pigmented epithelium (RPE) cells is necessary for research and potential therapeutic uses. Especially desirable are methods for the production of RPE cells using xeno-free culture conditions. Disclosed herein are novel methods for the production of RPE cells from pluripotent cells with high yields, including xeno-free production methods. Also provided are methods of efficiently isolating RPE cells from cultures containing heterogeneous cell types, allowing for substantially pure RPE cell cultures to be established. Additionally, novel methods for the cryopreservation of RPE cells are provided.
Owner:UNIV OF SOUTHERN CALIFORNIA +1

Pluripotent stem cells obtained by non-viral reprogramming

Methods for reprogramming primate somatic cells to pluripotency using an episomal vector that does not encode an infectious virus are disclosed. Pluripotent cells produced in the methods are also disclosed.
Owner:WISCONSIN ALUMNI RES FOUND

OCT4 and SOX2 with SV40 T antigen produce pluripotent stem cells from primate somatic cells

Methods for reprogramming primate somatic cells to pluripotency using an episomal vector that does not encode an infectious virus are disclosed. Pluripotent cells produced in the methods are also disclosed.
Owner:WISCONSIN ALUMNI RES FOUND

Method and Medium for Neural Differentiation of Pluripotent Cells

The invention relates to a culture medium comprising an inhibitor of the BMP signaling pathway; and an inhibitor of the TGF / activin / nodal signaling pathway and to a method for obtaining a population of neural precursors using said culture medium.
Owner:INST NAT DE LA SANTE & DE LA RECHERCHE MEDICALE (INSERM) +1

Engineered three-dimensional connective tissue constructs and methods of making the same

Disclosed are engineered, living, three-dimensional connective tissue constructs comprising connective tissue cells. In some embodiments, the connective tissue cells are derived from multi-potent cells such as mesenchymal stem / stromal cells. In some embodiments, the cells are cohered to one another. In some embodiments, the multi-potent cells have been exposed to one or more differentiation signals to provide a living, three-dimensional connective tissue construct. In some embodiments, the constructs are substantially free of pre-formed scaffold at the time of use. Also disclosed are implants for engraftment, arrays of connective tissue constructs for in vitro experimentation, as well as methods of making the same.
Owner:ORGANOVO

Methods related to wound healing

The invention is directed to methods for the treatment of wounds. Such methods utilize novel compositions, including but not limited to amnion-derived multipotent cells (herein referred to as AMP cells), conditioned media derived therefrom (herein referred to as amnion-derived cellular cytokine suspension or ACCS), cell lysates derived therefrom, cell products derived therefrom, each alone or in combination.
Owner:STEMNION

Generation of cardiomyocytes from human pluripotent stem cells

Methods for generating high-yield, high-purity cardiomyocyte progenitors or cardiomyocytes from pluripotent cells are described. Wnt / β-catenin signaling is first activated in pluripotent cells, e.g., by inhibition of Gsk-3 to obtain a first population of cells. Wnt / β-catenin signaling is then inhibited in the first cell population to induce cardiogenesis under fully defined, growth factor free culture conditions.
Owner:WISCONSIN ALUMNI RES FOUND

Isolated homozygous stem cells, differentiated cells derived therefrom, and materials and methods for making and using same

The present invention discloses and describes pluripotent homozygous stem (HS) cells, and methods and materials for making same. The present invention also provides methods for differentiation of HS cells into progenitor (multipotent) cells or other desired cells, groups of cells or tissues. Further, the applications of the HS cells disclosed herein, include (but are not limited to) the diagnosis and treatment of various diseases (for example, genetic diseases, neurodegenerative diseases, endocrine-related disorders and cancer), traumatic injuries, cosmetic or therapeutic transplantation, gene therapy and cell replacement therapy.
Owner:STEMRON

Identification and Isolation of Multipotent Cells From Non-Osteochondral Mesenchymal Tissue

InactiveUS20070248580A1BiocideNervous disorderCD16CD15
Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue. This invention relates to the identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue. Specifically, it relates to an adult multipotent cell or a cell population or composition comprising said cell, isolated from non-osteochondral mesenchymal tissue, characterized in that it is positive for the following markers: CD9, CD10, CD13, CD29, CD44, CD49A, CD51, CD54, CD55, CD58, CD59, CD90 and CD105 and because it lacks expression of the following markers: CD11b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
Owner:AUTONOMOUS UNIVERSITY OF MADRID +1

Control of Cells and Cell Multipotentiality in Three Dimensional Matrices

Methods for wound healing or tissue regeneration by means of cell and tissue engineering, including using three-dimensional matrices with cells therein. A three-dimensional matrix, optionally containing cells such as fibroblasts, is inserted Into the wound of a subject. An anti-inflammatory factor may also be used to reduce or suppress the immune response. The wound may be covered to limit exposure to gaseous oxygen, for example, using a membrane. An anticoagulant may also be applied. In addition, cells, such as fibroblasts or stem cells, when cultured within a three-dimensional matrix, under certain conditions, can be induced to form non-fibroblast multipotent cells. When stem cells are cultured in the three-dimensional matrix, at least some of the stem cells remain as stem cells and do not differentiate. Kits for promoting the control of cells within three-dimensional matrices are also disclosed.
Owner:MASSACHUSETTS INST OF TECH

Methods for culture and production of single cell populations of human embryonic stem cells

We used Accutase™, a commercially available cell detachment solution, for single cell propagation of pluripotent hESCs. Unlike trypsin dissociation, Accutase treatment does not significantly affect the plating efficiency of hESC dissociation into single cells. Cultures dissociated with Accutase to single cells at each passage maintain a higher proportion of pluripotent cells as compared to collagenase-passaged hESCs. Accutase-treated hESCs can be grown to a high density as monolayers, and yet retain their pluripotency.
Owner:BURNHAM INST FOR MEDICAL RES

Pluripotent Cells Distributed Ubiquitously In Animal Tissue, Which Proliferate Selectively In Lower-Serum Culture

It is intended to provide a pluripotent cell having the following properties: (1) being contained in a mixed-cell type population obtained by enzymatic treatment of the tissue collected from an animal; (2) being contained in a sedimented cell population obtained by centrifugating the mixed-cell type population of the property (1); (3) selectively proliferating by culturing in a medium containing 2% (v / v) or lower serum and 1 to 100 ng / ml of fibroblast growth factor-2; and (4) being differentiated into cells having the characteristics of adipocytes, osteoblasts, chondrocytes, tendon cells, myocardial cells, myoblasts, neurocytes or vascular endothelial cells by adjusting the culture condition; cells having differentiated from the above cell; and a method of conveniently obtaining the pluripotent cell in a large amount.
Owner:KYOWA HAKKO KIRIN CO LTD +3

Cell Sheet Containing Mesenchymal Stem Cells

ActiveUS20090053277A1Induce cardiac muscleInduce neovascularizationBiocideMammal material medical ingredientsVascular endotheliumThree vessels
Mesenchymal stem cells are pluripotent cells capable of differentiating into myocardial and vascular endothelial cells. The present invention demonstrates that the mesenchymal stem cell sheet have therapeutic potential for a severely damaged heart due to its pluripotency and in situ self-renewal capability. Mesenchymal stem cells derived from adipose tissue were cultured to prepare a mesenchymal stem cell sheet. Four weeks after induction of myocardial infarction in rats, the mesenchymal stem cell sheet was transplanted to the heart. The mesenchymal stem cell sheet were readily engrafted to the surface of the scarred myocardium, grew gradually in situ, and formed a thick layer (approximately 600 μm) in 4 weeks. The grown transplanted mesenchymal tissue contained newly formed blood vessels, myocardial cells, and undifferentiated mesenchymal cells. The engrafted mesenchymal stem cells inhibited thinning of the myocardial wall in the scar area, and improved cardiac function and survival rate in rats with myocardial infarcts. Thus, mesenchymal stem cell sheet transplantation may represent a novel therapeutic approach for myocardial tissue regeneration.
Owner:H&L MEDICAL CORP

Cell culture platform for single cell sorting and enhanced reprogramming of ipscs

ActiveUS20140220681A1Increased potencyImproving efficiency of reprogrammingCell dissociation methodsGenetically modified cellsFeeder freeCell dissociation
The invention provides cell culture conditions for culturing stem cells, including feeder-free conditions for generating and culturing human induced pluripotent stem cells (iPSCs). More particularly, the invention provides a culture platform that allows long-term culture of pluripotent cells in a feeder-free environment; reprogramming of cells in a feeder-free environment; single-cell dissociation of pluripotent cells; cell sorting of pluripotent cells; maintenance of an undifferentiated status; improved efficiency of reprogramming; and generation of a naïve pluripotent cell.
Owner:FATE THERAPEUTICS

Reprogramming of adult human testicular stem cells to pluripotent germ-line stem cells

Methods for therapeutically programming human adult stem cells into pluripotent cells are provided. Cell therapeutically programmed from adult testicular cells are disclosed. The therapeutically reprogrammed cells are suitable for cellular regenerative therapy and have the potential to differentiate into more committed cell lineages.
Owner:PRIMEGEN BIOTECH LLC

Stem cell separating material and method of separation

The present invention has its object to provide a material for separating stem cell and a filter for separating stem cell, each is capable of selectively separating and recovering, in a simple and easy manner, stem cells from body fluids or biological tissue-derived treated fluids, a method for separating and recovering stem cells, and stem cells obtained by such method. The present invention is a material for separating stem cell which has a density K of 1.0×104≦K≦1.0×106 and a fiber diameter of 3 to 40 μm; a filter for separating stem cell which comprises the material for separating stem cell as packed in a container having a fluid inlet port and a fluid outlet port; a method of separating and recovering stem cells which comprises using the material for separating stem cell or the filter for separating stem cell; and a method of producing a multipotent cell fraction.
Owner:KANEKA CORP

Methods related to wound healing

The invention is directed to methods for the treatment of wounds. Such methods utilize novel compositions, including but not limited to amnion-derived multipotent cells (herein referred to as AMP cells), conditioned media derived therefrom (herein referred to as amnion-derived cellular cytokine suspension or ACCS), cell lysates derived therefrom, cell products derived therefrom, each alone or in combination.
Owner:STEMNION

Preparations Derived From Placental Materials and Methods of Making and Using Same

Preparations derived from placental materials and methods of making and using same, the preparations including a first preparation composed of placental membranes digested in collagenase, a second preparation composed of multipotent cells derived from the collagenase digested placental membranes and that are grown in adherent culture beyond confluence and a third preparation composed of ground placental membranes re-suspended in a fluid containing hyaluronic acid. The preparations can be used for regenerating damaged or defective tissue including connective tissue, nerve tissue, muscle tissue, skin tissue, cartilage tissue and bone tissue. The preparations can also be used as dermal fillers in cosmetic and plastic surgery applications.
Owner:NUTECH MEDICAL

Cortical interneurons and other neuronal cells produced by the directed differentiation of pluripotent and multipotent cells

Provided are cortical interneurons and other neuronal cells and in vitro methods for producing such cortical interneurons and other neuronal cells by the directed differentiation of stem cells and neuronal progenitor cells. The present disclosure relates to novel methods of in vitro differentiation of stem cells and neural progenitor cells to produce several type neuronal cells and their precursor cells, including cortical interneurons, hypothalamic neurons and pre-optic cholinergic neurons. The present disclose describes the derivation of these cells via inhibiting SMAD and Wnt signaling pathways and activating SHH signaling pathway. The present disclosure relates to the novel discovery that the timing and duration of SHH activation can be harnessed to direct controlled differentiation of neural progenitor cells into either cortical interneurons, hypothalamic neurons or pre-optic cholinergic neurons. The present disclosure also relates to compositions of cortical interneurons, hypothalamic neurons or pre-optic cholinergic neurons, and their precursors, that are highly enriched and can be used in variety of application. These cells can be used therapeutically to treat neurodegenerative and neuropsychiatric disorders, and can be used for disease modeling and drug screening.
Owner:MEMORIAL SLOAN KETTERING CANCER CENT +1

Genomic engineering of pluripotent cells

Provided are methods and compositions for obtaining genome-engineered iPSCs, and derivative cells with stable and functional genome editing at selected sites. Also provided are cell populations or clonal cell lines derived from genome-engineered iPSCs, which comprise targeted integration of one or more exogenous polynucleotides, and / or in / dels in one or more selected endogenous genes.
Owner:FATE THERAPEUTICS

Methods and compositions for inducing hematopoietic cell differentiation

The invention provides culture platforms, cell media, and methods of differentiating pluriptent cells into hematopoietic cells. The invention further provides pluripotent stem cell-derived hematopoietic cells generated using the culture platforms and methods disclosed herein, which enable feed-free, monolayer culturing and in the absence of ER formation. Specifically, pluripotent stem cell-derived hematopoietic cell of this invention include, and not limited to, iHSC, definitive hemogenic endothelium, hematopoietic multipotent progenitors, T cell progenitors, NK cell progenitors, T cells, and NK cells.
Owner:FATE THERAPEUTICS

In vitro embryo blastocyst prediction methods

Methods, compositions and kits for determining the likelihood of reaching the blastocyst stage for one or more embryos or pluripotent cells are provided. These methods, compositions and kits find use in identifying embryos and oocytes in vitro that are most useful in treating infertility in humans.
Owner:AUXOGYN

Differentiation method for production of glial cell populations

The present invention provides methods for generating oligodendrocyte progenitor cells from pluripotent cells, as well as methods for sustaining these oligodendrocyte progenitor cells in relatively pure cultures for long periods of time. The present invention also provides methods for further differentiating these oligodendrocyte progenitor cells into various glial cells.
Owner:CASE WESTERN RESERVE UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products