Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

33 results about "Fluid sample analysis" patented technology

Method and apparatus for a tunable diode laser spectrometer for analysis of hydrocarbon samples

The present invention provides an down hole apparatus and method for ultrahigh resolution spectroscopy using a tunable diode laser (TDL) for analyzing a formation fluid sample downhole or at the surface to determine formation fluid parameters. In addition to absorption spectroscopy, the present invention can perform Raman spectroscopy on the fluid, by sweeping the wavelength of the TDL and detecting the Raman-scattered light using a narrow-band detector at a fixed wavelength. The spectrometer analyzes a pressurized well bore fluid sample that is collected downhole. The analysis is performed either downhole or at the surface onsite. Near infrared, mid-infrared and visible light analysis is also performed on the sample to provide an onsite surface or downhole analysis of sample properties and contamination level. The onsite and downhole analysis comprises determination of aromatics, olefins, saturates, gas oil ratio, API gravity and various other parameters which can be estimated by correlation, a trained neural network or a chemometric equation.
Owner:BAKER HUGHES INC

Devices and methods for collecting and analyzing fluid samples from the oral cavity

Devices for collecting a fluid sample from the oral cavity, the device including a mouthpiece that includes a chamber, the chamber including front and rear inner walls; and means for collecting the fluid sample from the oral cavity; and methods of collecting and analyzing samples of fluid from the oral cavity, including the steps of placing the device in the oral cavity, collecting the fluid sample and conducting an analysis of the fluid sample.
Owner:JOHNSON & JOHNSON CONSUMER COPANIES

Biologic fluid sample analysis cartridge

A biological fluid sample analysis cartridge, analysis system, and method for analyzing a biologic fluid sample are provided. The cartridge includes a collection port, at least one channel within the cartridge in fluid communication with the collection port, a passage in fluid communication with the at least one channel, and an analysis chamber mounted on a tray. The tray is mounted relative to the cartridge and selectively positionable relative to the passage in a first position where the analysis chamber will engage a bolus of sample extending out from the passage to permit selective transfer of sample from the bolus to the analysis chamber.
Owner:ABBOTT POINT CARE

Biologic fluid sample analysis cartridge

A biological fluid sample analysis cartridge, analysis system, and method for analyzing a biologic fluid sample are provided. The cartridge includes a collection port, at least one channel within the cartridge in fluid communication with the collection port, a passage in fluid communication with the at least one channel, and an analysis chamber mounted on a tray. The tray is mounted relative to the cartridge and selectively positionable relative to the passage in a first position where the analysis chamber will engage a bolus of sample extending out from the passage to permit selective transfer of sample from the bolus to the analysis chamber.
Owner:ABBOTT POINT CARE

Downhole formation fluid contamination assessment

The present invention relates to a method of detecting synthetic mud filtrate in a downhole fluid including placing a downhole tool into a wellbore, introducing a downhole fluid sample into the downhole tool, analyzing the downhole fluid sample in the downhole tool, producing at least two filtrate markers from the analyzing of the downhole fluid sample and converting the at least two filtrate markers by vector rotation to a sufficiently orthogonal signal. The first pumped fluid sample giving initial plateau readings can be a proxy for 100% drilling fluid having an initial orthogonal signal and subsequent samples can be converted to orthogonal signals that are referenced to the first pumped fluid signal to give a calculation of percent contamination of the formation fluid.
Owner:HALLIBURTON ENERGY SERVICES INC

Fluid sample analysis using class weights

Most automatic particle classification methods produce errors. The invention provides a method for improving the accuracy of particle classification while shortening the amount of manual review time required from the operator. The method uses class weights, which are statistically-derived correction factors that accounts for frequency of classification errors. A first class weight and a second class weight are assigned to the first class and the second class, respectively. The number of particles in each of the first and the second classes is multiplied by the first class weight and the second class weight, respectively, to generate a corrected number of particles in each of the classes. If particles are reclassified, the class weights are recalculated in response to the reclassification. The method is usable with a complete classification where all the particles in a sample are classified, or a selective classification of a subset of the particles in the sample.
Owner:IRIS INT

Biologic fluid sample analysis cartridge with sample collection port

A biological fluid sample analysis cartridge is provided that includes a collection port and a body. The body has one or more internal channels in selective fluid communication with the collection port. The collection port includes a collection bowl, and a slide valve assembly operable to be selectively positioned in an open position and a closed position. In the open position, the collection bowl is accessible for sample deposition, and in the closed position the collection bowl is inaccessible for sample deposition.
Owner:ABBOTT POINT CARE

Fluid sample analysis system

A fluid analysis system may include a stage configured to receive a sample holder including a fluid sample to be analyzed. The fluid analysis system may also include a fluid analyzer configured to monitor at least one characteristic of the fluid sample to be analyzed; and an inclined rail; wherein the stage is configured to move along the inclined rail to cause the sample holder to move with a first component of motion along an analysis axis of the fluid analyzer and simultaneously with a second component of motion orthogonal to the analysis axis of the fluid analyzer, wherein the first component of motion affects a focus of the fluid analyzer relative to at least one constituent of the fluid sample to be analyzed.
Owner:PIXCELL MEDICAL TECH

Method and apparatus for sample preparation in an automated discrete fluid sample analyzer

An automated discrete fluid sample analyzer includes a sample preparation module. The sample preparation module includes a well configured to receive a sample deposited by a pipettor and a sample preparation device in fluid communication with the well. The fluid sample is transferred from the well to the sample preparation device, and the sample preparation device prepares the fluid sample. The pipettor then aspirates the prepared fluid sample. The prepared fluid sample may be transferred from the sample preparation device back to the well, and the pipettor aspirates the prepared fluid sample from the well. In one embodiment, the sample preparation device includes a receptacle having a catalyst disposed therein. The catalyst may include a noble metal catalyst, such as cadmium. In another embodiment, the sample preparation device includes an ultraviolet lamp configured to apply ultraviolet light to the fluid sample. In yet another embodiment, the sample preparation device includes a heater configured to heat the fluid sample. In another aspect, a fluid sample is agitated to place more of the fluid sample in contact with the catalyst.
Owner:KPM ANALYTICS NORTH AMERICA CORP

Method and apparatus for sample preparation in an automated discrete fluid sample analyzer

An automated discrete fluid sample analyzer includes a sample preparation module. The sample preparation module includes a well configured to receive a sample deposited by a pipettor and a sample preparation device in fluid communication with the well. The fluid sample is transferred from the well to the sample preparation device, and the sample preparation device prepares the fluid sample. The pipettor then aspirates the prepared fluid sample. The prepared fluid sample may be transferred from the sample preparation device back to the well, and the pipettor aspirates the prepared fluid sample from the well. In one embodiment, the sample preparation device includes a receptacle having a catalyst disposed therein. The catalyst may include a noble metal catalyst, such as cadmium. In another embodiment, the sample preparation device includes an ultraviolet lamp configured to apply ultraviolet light to the fluid sample. In yet another embodiment, the sample preparation device includes a heater configured to heat the fluid sample. In another aspect, a fluid sample is agitated to place more of the fluid sample in contact with the catalyst.
Owner:KPM ANALYTICS NORTH AMERICA CORP

Downhole formation fluid contamination assessment

The present invention relates to a method of detecting synthetic mud filtrate in a downhole fluid including placing a downhole tool into a wellbore, introducing a downhole fluid sample into the downhole tool, analyzing the downhole fluid sample in the downhole tool, producing at least two filtrate markers from the analyzing of the downhole fluid sample and converting the at least two filtrate markers by vector rotation to a sufficiently orthogonal signal. The first pumped fluid sample giving initial plateau readings can be a proxy for 100% drilling fluid having an initial orthogonal signal and subsequent samples can be converted to orthogonal signals that are referenced to the first pumped fluid signal to give a calculation of percent contamination of the formation fluid.
Owner:HALLIBURTON ENERGY SERVICES INC

Modular Instrumentation for Analyzing Biological Fluids

ActiveUS20160303563A1Efficient and distributed diagnostics infrastructureEasily serviceableMaterial analysis by observing effect on chemical indicatorScattering properties measurementsModularityComputer module
A modular analytic system includes a base, at least one fluid sample processing module configured to be removably attached to the base, at least one fluid sample analysis module configured to be removably attached to the base, a fluid actuation module positioned on the base, a fluidic network comprising multiple fluidic channels, in which the fluid actuation module is arranged to control transport of a fluid sample between the at least one sample processing module and the at least one sample analysis module through the fluidic network, and an electronic processor, in which the electronic processor is configured to control operation of the fluid actuation module and receive measurement data from the at least one fluid sample analysis module.
Owner:THE GENERAL HOSPITAL CORP

Device for analyzing a fluid sample and use of test card with same

Apparatuses and methods related to a point-of-care portable assay device and the use thereof with a test card are described herein. In a general embodiment, a device for monitoring a polymerase chain reaction in a fluid sample includes a vacuum source configured to pull the fluid sample through a microchannel, a current source configured to cause the polymerase chain reaction while the fluid sample is located within the microchannel, a light source configured to illuminate the polymerase chain reaction while the current source causes the polymerase chain reaction, a camera imaging device configured to record an image of the polymerase chain reaction while the light source illuminates the polymerase chain reaction, and a controller configured to analyze the image of the polymerase chain reaction and output a resulting analysis of the polymerase chain reaction.
Owner:FLUXERGY

Cartridge for a fluid sample analyser

The present invention provides a cartridge for apparatus for analysing a sample comprising a fluid as a flow cell for receiving the sample. The cell is formed from a substantially rigid support surface (102), a sensor comprising an electrical mechanical transducer (92), for example a wafer of quartz crystal and adhesive means, such as double sided adhesive tape (100) attaching the sensor to the support surface. The support surface and sensor are spaced from each other by a membrane, which may form part of the double sides adhesive tape so as to define the flow cell between the support surface and the sensor. The flow cell also has an opening (for example, 111) through which, in use, the sample passes. The sensor, forming part of the flow cell, comes into contact with the sample to enable the sample to be analysed.
Owner:INVERNESS SWITZERLAND GMBH

Modular instrumentation for analyzing biological fluids

A modular analytic system includes a base, at least one fluid sample processing module configured to be removably attached to the base, at least one fluid sample analysis module configured to be removably attached to the base, a fluid actuation module positioned on the base, a fluidic network comprising multiple fluidic channels, in which the fluid actuation module is arranged to control transport of a fluid sample between the at least one sample processing module and the at least one sample analysis module through the fluidic network, and an electronic processor, in which the electronic processor is configured to control operation of the fluid actuation module and receive measurement data from the at least one fluid sample analysis module.
Owner:THE GENERAL HOSPITAL CORP

Fluid sample analysis using class weights

Most automatic particle classification methods produce errors. The invention provides a method for improving the accuracy of particle classification while shortening the amount of manual review time required from the operator. The method uses class weights, which are statistically-derived correction factors that accounts for frequency of classification errors. A first class weight and a second class weight are assigned to the first class and the second class, respectively. The number of particles in each of the first and the second classes is multiplied by the first class weight and the second class weight, respectively, to generate a corrected number of particles in each of the classes. If particles are reclassified, the class weights are recalculated in response to the reclassification. The method is usable with a complete classification where all the particles in a sample are classified, or a selective classification of a subset of the particles in the sample.
Owner:IRIS INT

Cartridge for a fluid sample analyser

A cartridge for apparatus for analysing a sample comprising a fluid as a flow cell for receiving the sample. The cell is formed from a substantially rigid support surface (102), a sensor comprising an electrical mechanical transducer (92), for example a wafer of quartz crystal and adhesive means, such as double sided adhesive tape (100) attaching the sensor to the support surface. The support surface and sensor are spaced from each other by a membrane, which may form part of the double sides adhesive tape so as to define the flow cell between the support surface and the sensor. The flow cell also has an opening (for example, 111) through which, in use, the sample passes. The sensor, forming part of the flow cell, comes into contact with the sample to enable the sample to be analysed.
Owner:ABBOTT RAPID DIAGNOSTICS INT UNLTD

System for Analysis of a Fluid Sample

A system for analysis of a fluid sample has a carrier with a channel. A plug with a sensor can be inserted into a socket arranged on the carrier in such a way that the sensor is in contact with an interior volume of the channel. The sensor can be an optical sensor, in particular based on fluorescence. Optical fibres may be connected to the plug. A camera (8) may be provided to record an image of the plug. The carrier may in particular be a microfluidic chip and the channel a microfluidic channel.
Owner:PRESENS PRECISION SENSING

Cartridge For A Fluid Sample Analyser

A cartridge is used in apparatus for analysing a sample comprising a fluid and has a sample receiving cell which receives the fluid for analysis. The cell comprises a surface on one of two housing parts (120; 200; 300; 102; 202; 302) and a sensor comprising an electrical-mechanical transducer (92; 240; 340) spaced from said surface. The sensor is attached to one of the housing parts by an adhesive membrane (100; 246; 346) wherein the membrane is attached only to one of said parts of housing so that any slight relative movement or flexing of the housing parts does not result in forces being applied to the sensor via the membrane.
Owner:INVERNESS SWITZERLAND GMBH

Camera imaging system for a fluid sample assay and method of using same

Apparatuses and for causing a point-of-care polymerase chain reaction and analyzing the polymerase chain reaction at the point-of-care, particularly when unwanted bubbles are present during the polymerase chain reaction, are described herein. In a general embodiment, a device for analysing a polymerase chain reaction in a fluid sample includes a current source configured to cause the polymerase chain reaction by heating the fluid sample within a target zone, a camera imaging device configured to record a plurality of images of the fluid sample in the target zone while the current source causes the polymerase chain reaction, and a controller configured to (i) distinguish wanted objects in the plurality of images from an unwanted object in the plurality of images, and (ii) determine whether the fluid sample tests positive or negative for a bacteria or virus based on the wanted objects.
Owner:FLUXERGY

Fluid sample analysis system

A fluid analysis system may include a stage configured to receive a sample holder including a fluid sample to be analyzed. The fluid analysis system may also include a fluid analyzer configured to monitor at least one characteristic of the fluid sample to be analyzed; and an inclined rail; wherein the stage is configured to move along the inclined rail to cause the sample holder to move with a first component of motion along an analysis axis of the fluid analyzer and simultaneously with a second component of motion orthogonal to the analysis axis of the fluid analyzer, wherein the first component of motion affects a focus of the fluid analyzer relative to at least one constituent of the fluid sample to be analyzed.
Owner:PIXCELL MEDICAL TECH

Card, kit system in use for analyzing sample of liquid

A check box system used for analyzing fluid sample is prepared for forming control component by a pump, a valve and a detector; using micro-processing technique to from out check box; setting a micro-pipeline in said box; connecting one end of micro-pipeline to pump and arranging a hole being used to flow in fluid sample between two ends of micro-pipeline.
Owner:CAPITALBIO CORP +1

Particle analysis method and apparatus for a spectrometry-based particle analysis

A particle analysis method and apparatus, including a spectrometry-based analysis of a fluid sample (1), comprises the steps of creating a sample light beam S and a probe light beam P with a light source device (10) and periodically varying a relative phase between the sample and probe light beams S, P with a phase modulator device (20), irradiating the fluid sample (1) with the sample light beam S, detecting the sample and probe light beams S, P with a detector device (40), and providing a spectral response of the at least one particle (3), wherein the light source device (10) comprises at least one broadband source, which has an emission spectrum covering a mid-infrared MIR frequency range, and the phase modulator device (20) varies the relative phase with a scanning period equal to or below the irradiation period of irradiating the at least one particle (3, 4).
Owner:MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN EV +1

Device for use in fluid sample analysis

The present invention relates to a device (10) for use in fluid sample analysis. It is described to position (310) a top part (20) of the device (10) adjacent to a base part (30) of the device so as to define a fluidic receiving region in between, the top part being provided with a through opening fluidly connected to the fluidic receiving region, and the bottom part being provided with a radiation window adjacent to the fluidic receiving region. A fluidic sample is supplied (320) through the opening (24). The fluidic sample is moved laterally (330) in the fluid receiving region without the use of an intermediary membrane between the top part and the base part. A radiation is emitted (340) to the fluid receiving region. A radiation is detected (350) that is reflected by the device. A presence of the fluidic sample is determined (360) on the basis of a measured reflectance value based on the detected radiation.
Owner:SIEMENS HEALTHINEERS NEDERLAND BV

Biologic fluid sample analysis cartridge with non-reflective beads

A biological fluid sample analysis chamber and a method for analyzing a biological fluid sample is provided. The chamber includes a first chamber panel, a second chamber panel, and a plurality of beads disposed between the first chamber panel and the second chamber panel, which beads are configured to not reflect light incident to the beads in an amount that appreciably interferes with a photometric analysis of the biologic fluid.
Owner:ABBOTT POINT CARE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products