Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

64results about How to "Excessive noise" patented technology

Juicer

There is provided a juicer for extracting juice from fruits and vegetables comprising a lower base, an upper base, a top cover with a hollow cylindrical feeding tube, a grating-disk and mesh filter assembly, a pulp collector, and a pusher. The upper base is mounted on a lower base and receives the grating-disk and mesh filter assembly. The grating disk is a concave shape and tooth-like cutters are arranged into rows on an inclined surface of the grating disk. The top cover is fitted on the upper base and houses a hollow cylindrical feeding tube. Inside the feeding tube is an anti-rotation protrusion, located at the bottom of the feeding tube made an integral part of the feeding tube to prevent the food from spinning inside the tube. The pusher is inserted into the feeding tube and contains a opening that matches the anti-rotation protrusion and into which rests the anti-rotation protrusion. The bottom of the pusher is convex-shaped and matches the concave grating disk. The pusher forces the fruit or vegetable through the bore of the feeding tube onto the grating disk.
Owner:HUIYANG ALLAN PLASTIC & ELECTRIC INDS

Headset And A Method For Audio Signal Processing

ActiveUS20150170632A1Level estimate or noise level estimateImprove signal-to-noise ratioMicrophonesEar treatmentAudio signalEngineering
A headset and a method configured to process audio signals from multiple microphones, comprising: a first pair of microphones (101,102) outputting a first pair of microphone signals and a second pair of microphones (103, 104) outputting a second pair of microphone signals; a first near-field beamformer (105) and a second near-field beamformer (106) each configured to receive a pair of microphone signals and adapt the spatial sensitivity of a respective pair of microphones as measured in a respective beamformed signal (XL; XR) output from a respective beamformer (105; 106); wherein the spatial sensitivity is adapted to suppress noise relative to a desired signal; a third beamformer (107) configured to dynamically combine the signals (XL; XR) output from the first beamformer (105) and the second beamformer (106) into a combined signal (XC); wherein the signals are combined such that signal energy in the combined signal is minimized while a desired signal is preserved; and a noise reduction unit (109) configured to process the combined signal (XC) from the third beamformer (107) and output the combined signal such that noise is reduced.
Owner:GN NETCOM

Noise attenuation panel and a gas turbine component comprising a noise attenuation panel

ActiveUS20120168248A1Minimize resonance frequencyLong distanceEngine manufactureWallsGas turbinesEngineering
A noise attenuation panel includes a first wall, a second wall and partition walls connected to the first and second walls and defining cells between the first and second walls. The first wall is provided with a plurality of through holes. At least two of the cells are interconnected via a communication hole. One of the through holes leads to a first of the at least two interconnected cells and a second of the interconnected cells is configured to prevent any gas flow through the second cell.
Owner:GKN AEROSPACE SWEDEN AB

Selectively resampling particle filter

A method, and program for implementing such method, for use in estimating a conditional probability distribution for past signal states, current signal states, future signal states, and / or complete pathspace of a non-linear random dynamic signal process, includes providing sensor measurement data associated with the non-linear random dynamic signal process. State data including at least location and weight information associated with each of a plurality of particles is provided as a function of the sensor measurement data that collectively probabilistically represents the state of the non-linear random dynamic signal process at time t. An estimate of the conditional probability distribution is computed for the signal state based on the state data for particles under consideration. The particles under consideration are resampled upon receipt of sensor measurement data. The resampling includes comparing weight information associated with a first particle with weight information associated with a second particle to determine if the state data of the first and second particles is to be adjusted. The first particle is the highest weighted particle under consideration and the second particle is the lowest weighted particle under consideration.
Owner:LOCKHEED MARTIN CORP

Tandem angular ball bearing

A tandem angular ball bearing is provide that prevent damage from occurring to the rolling surfaces of the balls during assembly and transport to an extent that would cause an excessive decrease in life of the balls, and that can maintain excelled durability without the occurrence of excessive vibration and noise during operation. In order to accomplish this, the entire portion of the inner peripheral surface of an outer ring (5b) from a small-diameter side outer ring raceway (11) to the continuous section (25a) that is continuous with the end surface (23) on the large inner diameter side of the outer ring (5b), and the entire portion of the outer peripheral surface of an inner ring (6b) from a large-diameter side inner ring raceway (12) to the continuous section (25g) that is continuous with the end surface (14) on the small outer-diameter side of the inner ring (6b) are polished smooth surfaces having no indifferentiable corner sections in the cross-section shape. Moreover, the outer ring (5c) comprises groove shoulder sections (16a, 16b, 17a, 17b) in at least one of the portion on one side in the axial direction of the large-diameter side outer ring raceway (10), and the portion on the one side in the axial direction of the small-diameter side outer ring raceway (11), and in the portion on the other side in the axial direction of the large-diameter side outer ring raceway (10) and in the portion on the other end in the axial direction of the small-diameter side outer ring raceway (11).
Owner:NSK LTD

Multiple-axis magnetic bearing and control of the magnetic bearing with active switch topologies

A magnetic bearing system (120) includes a first active magnetic bearing (AMB) (202) including a first group of electromagnetic actuators (306, 310, 314, 318) to support a shaft and a second AMB (204) including a second group of electromagnetic actuators (308, 312, 316, 320) to support the shaft. A controller for the two AMB's includes a multi-phase topology (400) with a plurality of active current switches for controlling the electromagnetic actuators (306-320) of each of the first AMB (202) and the second AMB (204). Each electromagnetic actuator (306, 310, 314, 318) of the first AMB (202) is electrically coupled to an electromagnetic actuator (308, 312, 316, 320) of the second AMB (204). Each pair of coupled electromagnetic actuators (306, 316) is respectively connected to three phase legs (418, 420, 422) of the topology (400) of the controller, whereby one end (X2+, X3−) of each of the electromagnetic actuators of a pair (306, 316) is connected to one phase leg (420) of the topology (400) and the other ends (X1+, X4−) are respectively connected to two further phase legs (418, 422) of the topology (400). The controller is operable to receive information indicative of a position of the rotor shaft and supply an adjustment signal to the magnetic bearing system (120) to adjust the position of the shaft.
Owner:CARRIER CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products