Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3198results about "Vehicle safety belts" patented technology

Tracking and gesture recognition system particularly suited to vehicular control applications

A system and method tracks the movements of a driver or passenger in a vehicle (ground, water, air, or other) and controls devices in accordance with position, motion, and / or body or hand gestures or movements. According to one embodiment, an operator or passenger uses the invention to control comfort or entertainment features such the heater, air conditioner, lights, mirror positions or the radio / CD player using hand gestures. An alternative embodiment facilitates the automatic adjustment of car seating restraints based on head position. Yet another embodiment is used to determine when to fire an airbag (and at what velocity or orientation) based on the position of a person in a vehicle seat. The invention may also be used to control systems outside of the vehicle. The on-board sensor system would be used to track the driver or passenger, but when the algorithms produce a command for a desired response, that response (or just position and gesture information) could be transmitted via various methods (wireless, light, whatever) to other systems outside the vehicle to control devices located outside the vehicle. For example, this would allow a person to use gestures inside the car to interact with a kiosk located outside of the car.
Owner:JOLLY SEVEN SERIES 70 OF ALLIED SECURITY TRUST I

Method and system for detecting objects external to a vehicle

Method and system for obtaining information about objects in the environment outside of and around a vehicle and preventing collisions involving the vehicle includes directing a laser beam from the vehicle into the environment, receiving from an object in the path of the laser beam a reflection of the laser beam at a location on the vehicle, and analyzing the received laser beam reflections to obtain information about the object from which the laser beam is being reflected. Analysis of the laser beam reflections preferably entails range gating the received laser beam reflections to limit analysis of the received laser beam reflections to only those received from an object within a defined (distance) range such that objects at distances within the range are isolated from surrounding objects.
Owner:AMERICAN VEHICULAR SCI

Driving separation distance indicator

A driving separation indication system for a vehicle includes an imaging sensor, a control and at least one indicator. The control is operable to process an image captured by the imaging sensor representative of a scene occurring exteriorly of the subject vehicle and to detect another vehicle via processing of the image. The control is operable to determine a threshold interspacing distance in response to a speed of the subject vehicle, and is operable to determine a distance from the subject vehicle to the detected other vehicle. The control is operable to at least occasionally actuate the indicator in response to the distance from the subject vehicle to the other vehicle being less than or equal to the threshold interspacing distance. The control may generally continuously determine the speed of the vehicle and the threshold interspacing distance to provide an appropriate threshold interspacing distance.
Owner:DONNELLY CORP

Touch gesture based interface for motor vehicle

An improved apparatus and method is provided for operating devices and systems in a motor vehicle, while at the same time reducing vehicle operator distractions. One or more touch sensitive pads are mounted on the steering wheel of the motor vehicle, and the vehicle operator touches the pads in a pre-specified synchronized pattern, to perform functions such as controlling operation of the radio or adjusting a window. At least some of the touch patterns used to generate different commands may be selected by the vehicle operator. Usefully, the system of touch pad sensors and the signals generated thereby are integrated with speech recognition and / or facial gesture recognition systems, so that commands may be generated by synchronized multi-mode inputs.
Owner:WAYMO LLC

Method and arrangement for controlling vehicular subsystems based on interpreted driver activity

Method and arrangement for controlling a subsystem of a vehicle dependent upon a sensed level of driver inattentiveness to vehicle driving tasks. A variable characteristic is measured, on a substantially real-time basis, which correlates to the driver's inattentiveness. The level of inattentiveness is assessed based at least in part on the measurement. The performance of a subsystem of the vehicle, such as cruise control or lane keeping support, is tailored, based thereupon, to assure that behavior of the vehicle appropriately matches the driver's present level of inattentiveness. The subsystem's operation is controlled in an effort to avoid or prevent the establishment of driving conditions that become inherently more dangerous as the driver's level of inattentiveness increases.
Owner:VOLVO TECH

Vehicle illumination system and method

An apparatus and method for illuminating a vehicle including a light source connected to an illuminatable component such as an interior or exterior vehicle door handle or steering wheel, and a control system including a plurality of sensors that monitor the vehicle and surroundings for predetermined conditions and selectively illuminate the component as a means of conveying information or warnings about the vehicle or its surroundings. Illumination may be enhanced by other auditory signals such as audio alarms or vibration. Predetermined conditions may include the proximity of a vehicle user, key fob activation or proximity, input from an entertainment system, activation of a pressure sensor, the presence of a person or object in proximity to the vehicle, or the vehicle's ignition or gear state.
Owner:GM GLOBAL TECH OPERATIONS LLC

Vehicular Component Control Methods Based on Blind Spot Monitoring

Method for controlling a vehicular system based on the presence of an object in an environment around a vehicle with one goals being to prevent collisions between the vehicle and any objects. Infrared light is emitted from the vehicle into a portion of the environment around the vehicle and received by a sensor on the vehicle. Distance between the vehicle and an object from which the infrared light is reflected is determined based on the emission of the infrared light and reception of the infrared light. The presence of and an identification of the object from which light is reflected is / are determined based at least in part on the received infrared light. The vehicular system is controlled or adjusted based on the determination of the presence of an object in the environment around the vehicle and the identification of the object and the distance between the object and the vehicle.
Owner:AMERICAN VEHICULAR SCI

System and Method for Preventing Vehicular Accidents

Vehicle including an anticipatory sensor system for determining that an impact involving the vehicle is about to occur unless a corrective action is taken based on data obtained prior to the impact and determining whether the potential impact requires activation of a reactive system which controls operation of the vehicle. The anticipatory sensor system includes a receiver for receiving waves or energy and a pattern recognition system for analyzing the received waves or energy, or data representative thereof, to determine that an impact is about to occur if corrective action is not taken and whether the potential impact requires activation of the reactive system. The pattern recognition system ascertains the identity of an object from which the waves or energy have been emitted, reflected or generated, so that the determination whether the impact requires activation of the reactive system is based on identification of the object.
Owner:AMERICAN VEHICULAR SCI

Vehicle control

A vehicle control system has a plurality of subsystem controllers including an engine management system 28, a transmission controller 30, a steering controller 48, a brakes controller 62 and a suspension controller 82. These subsystem controllers are each operable in a plurality of subsystem modes, and are all connected to a vehicle mode controller 98 which controls the modes of operation of each of the subsystem controllers so as to provide a number of driving modes for the vehicle. Each of the modes corresponds to a particular driving condition or set of driving conditions, and in each mode each of the functions is set to the function in mode most appropriate to those conditions.
Owner:JAGUAR LAND ROVER LTD

System and method for preventing vehicular accidents

Vehicle including an anticipatory sensor system for determining that an impact involving the vehicle is about to occur unless a corrective action is taken based on data obtained prior to the impact and determining whether the potential impact requires activation of a reactive system which controls operation of the vehicle. The anticipatory sensor system includes a receiver for receiving waves or energy and a pattern recognition system for analyzing the received waves or energy, or data representative thereof, to determine that an impact is about to occur if corrective action is not taken and whether the potential impact requires activation of the reactive system. The pattern recognition system ascertains the identity of an object from which the waves or energy have been emitted, reflected or generated, so that the determination whether the impact requires activation of the reactive system is based on identification of the object.
Owner:AMERICAN VEHICULAR SCI

Vehicular impact reactive system and method

System and method for reacting to an expected impact involving a vehicle including an anticipatory sensor system for determining that an impact involving the vehicle is about to occur prior to the impact and an impact responsive system coupled to the sensor system and actuated after its determination of the expected impact. The sensor system includes wave receivers spaced apart from one another, each receiving waves generated by, modified by, or reflected from a common object exterior of the vehicle. The impact responsive system attempts to reduce the potential harm resulting from the impact and can be a protection apparatus which protects a vehicular occupant or a pedestrian, such as one including an airbag and an inflator for inflating the airbag.
Owner:AMERICAN VEHICULAR SCI

Motor vehicle occupant sensing systems

A roof-mounted passenger position sensor array of capacitive coupling passenger position sensors, to determine position and motion of a passenger by analysis of distances of the passenger to the various sensors of the array and analysis of the changes of distances with time.
Owner:METHODE ELETRONICS INC

Touch gesture based interface for motor vehicle

An improved apparatus and method is provided for operating devices and systems in a motor vehicle, while at the same time reducing vehicle operator distractions. One or more touch sensitive pads are mounted on the steering wheel of the motor vehicle, and the vehicle operator touches the pads in a pre-specified synchronized pattern, to perform functions such as controlling operation of the radio or adjusting a window. At least some of the touch patterns used to generate different commands may be selected by the vehicle operator. Usefully, the system of touch pad sensors and the signals generated thereby are integrated with speech recognition and / or facial gesture recognition systems, so that commands may be generated by synchronized multi-mode inputs.
Owner:WAYMO LLC

System and method for processing safety signals in an autonomous vehicle

InactiveUS7499774B2Decrease and eliminates need for manual interventionImprove securityDigital data processing detailsAnti-theft devicesUnsafe conditionProcess safety
System and method for processing a safety signal in an autonomous vehicle. Safety signals are typically generated in response to the detection of unsafe conditions or are sent by the vehicle operator. In either case, the safety signals are conveyed using redundant communication paths. The paths include a computer network and a current loop. The safety signals are processed, thereby causing actuators (e.g., linkages) to manipulate input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, accelerator, or transmission shifter). The manipulation ensures the vehicle responds appropriately to the safety signals, for example, by shutting down the vehicle.
Owner:IROBOT CORP

Hot vehicle safety system and methods of preventing passenger entrapment and heat suffocation

Safety systems for vehicles, primarily passenger vehicles, comprising automated systems and methods for preventing entrapment of children, disabled, aged or infirm persons, or pets from being trapped in closed vehicles left in the sun, so that they will not suffocate from the heat. The invention is characterized by use of one or more systems to sense the occupancy state and temperature inside the vehicle passenger or load space, and provide one or more outputs which can selectively be employed to provide interior and exterior warning of a trapped passenger in a dangerously hot car to permit rescue, and / or to activate vehicle electro-mechanical systems to relieve the heat, such as rolling down windows, unlatching seat belts, unlocking doors, starting the car and / or fans or air conditioning systems and the like. The exterior warnings may be any suitable warning, such as sounding the car horn or alarm siren, flashing head, tail or special lights, placing an emergency call via a vehicle dedicated cell phone, CB radio, GPS system, or the like.
Owner:ROBERT BOSCH CORP

Systems For a Shared Vehicle

The present invention relates to a system for automatically adjusting a vehicle feature of a vehicle, where the system includes a first sensor, an onboard computer, a camera, a mirror, a controller; an actuator; and an algorithm. The algorithm instructs the onboard computer in steps for adjusting one or more vehicle features. The first sensor and the controller are in electronic communication with the onboard computer and the controller is in electronic communication with one or more actuators that connect to and adjust the various vehicle features. The onboard computer includes or accesses a database that correlates users, features, and vehicle feature settings. Such vehicle features include seat position and camera viewing angle.
Owner:GURIN MICHAEL H

Driver assistance system

A system and method of assisting a driver of a vehicle by providing driver and vehicle feedback control signals is disclosed. The system and method includes receiving location data of the vehicle from a GPS unit, receiving the location data of the vehicle and retrieving navigation characteristics relevant to the location data using a processing circuit, generating a most probable future path for the vehicle and determining a location of at least one navigation characteristic with respect to the most probable future path and the vehicle, generating vehicle data at least one vehicle sensor, and transmitting a control signal to a vehicle control area network to warn the driver of an upcoming navigation characteristic on the most probable path.
Owner:TK HLDG

Protecting children and passengers with respect to a vehicle

There is provided a system and methods for mitigation of the potential dangers to which at least a child, and passengers, are exposed to prior to, during travel and after travel, when outside and adjacent a vehicle. Potential dangers to which a child is exposed are risks associated with driving and non-driving behavior of the driver, when the child is inside and outside the vehicle, when the vehicle is driven on public roads and on private property grounds, and as a result of deficient of mistaken operation of child and passenger related devices. The system and methods require input commands into an indicator to operate equipment elements aboard the vehicle, including sensors, operable devices and alert systems, and are operative for communication with remote stations, with adjacent-driven vehicles, and with the vehicle owner.
Owner:SABAN ASHER S

Automotive occupant sensor system and method of operation by sensor fusion

A system for sensing the presence, position and type classification of an occupant in a passenger seat of a vehicle, as well as for sensing the presence of a rear-facing child seat therein, for use in controlling a related air bag activator control system to enable, disable or control inflation rate or amount of inflation of an air bag. The sensor system employs sensor fusion, a process of combining information provided by two or more sensors (24, 26), each of which "sees" the world in a unique sense. In a preferred embodiment, infrared sensor inputs (78) and ultrasonic sensor inputs (79) are combined in a microprocessor by a sensor fusion algorithm (80) to produce an occupancy state output signal (85) to the air bag controller.
Owner:ROBERT BOSCH CORP

Obstacle detection device and method therefor

Provided is a technology for helping safe driving and realizing automatic driving of vehicles, or for counting the number of passing vehicles on the road or monitoring those passing vehicles for their driving. Using a plurality of cameras mounted in a vehicle or provided above a road, even if the relationship between the road plane and the respective cameras constantly changes in relative position or posture due to camera vibration or a change in road tilt, any obstacles located on the road such as other vehicles ahead, parked vehicles, and pedestrians on the road are detected without confusing those with textures including white lines, road signs, paint, road stains, and shadows of roadside objects, all of which do not disturb vehicle driving. An obstacle detection device 10 is structured by an image input section 11 for receiving images from a plurality of image pick-up devices 101, a correspondence detection section 12 for finding a plurality of pairs of corresponding points from the received right and left images, the slope degree calculation section 13 for calculating a slope degree of a plane including the corresponding points, and a result determination section 14 for determining as there being an obstacle when the calculated slope degree is larger than a predetermined value.
Owner:KK TOSHIBA

Vehicle power supply system

A main power source (2) is, for example, an ordinary Pb battery and generates a voltage of 12-13 V. At the time of starting an engine, the main power source (2) supplies power to a starter (8a). The main power source (2) is given a higher priority than an auxiliary power source (3) to supply power to ordinary loads (8b). The auxiliary power source (3) is a high performance battery (e.g., Li ion battery), which has superior charge acceptance capability and better state detectability over the main power source (2). Furthermore, the auxiliary power source (3) has an internal resistance per unit capacity, which is smaller than that of the main power source (2), and generates a voltage of 9-12 V. A generator (1) is directly connected to the auxiliary power source (3). The auxiliary power source (3) stores regenerative power, which is generated by the generator (1) at the time of deceleration of a vehicle, and is used as a redundant power source for the main power source (2). The main power source (2) and the auxiliary power source (3) are connected to each other through a supply circuit (5), which has a DC / DC converter (4), and a second supply circuit 7, which has a switch (6).
Owner:DENSO CORP

System and method for processing safety signals in an autonomous vehicle

InactiveUS20060089763A1Improve securityDecrease and eliminates need for manual interventionDigital data processing detailsAnti-theft devicesUnsafe conditionActuator
System and method for processing a safety signal in an autonomous vehicle. Safety signals are typically generated in response to the detection of unsafe conditions or are sent by the vehicle operator. In either case, the safety signals are conveyed using redundant communication paths. The paths include a computer network and a current loop. The safety signals are processed, thereby causing actuators (e.g., linkages) to manipulate input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, accelerator, or transmission shifter). The manipulation ensures the vehicle responds appropriately to the safety signals, for example, by shutting down the vehicle.
Owner:IROBOT CORP

Hot vehicle safety system and methods of preventing passenger entrapment and heat suffocation

Safety systems for vehicles, primarily passenger vehicles, comprising automated systems and methods for preventing entrapment of children, disabled, aged or infirm persons, or pets from being trapped in closed vehicles left in the sun, so that they will not suffocate from the heat. The invention is characterized by use of one or more systems to sense the occupancy state and temperature inside the vehicle passenger or load space, and provide one or more outputs which can selectively be employed to provide interior and exterior warning of a trapped passenger in a dangerously hot car to permit rescue, and / or to activate vehicle electro-mechanical systems to relieve the heat, such as rolling down windows, unlatching seat belts, unlocking doors, starting the car and / or fans or air conditioning systems and the like. The exterior warnings may be any suitable warning, such as sounding the car horn or alarm siren, flashing head, tail or special lights, placing an emergency call via a vehicle dedicated cell phone, CB radio, GPS system, or the like.
Owner:ROBERT BOSCH CORP

Collision detector

A vehicle collision detector is configured to reliably activate an airbag system at a collision and prevent the airbag system from erroneously operating. The collision detector includes two acceleration sensors disposed at different positions in a vehicle to detect acceleration for collision determination, first and second collision routines in which a determination is made on whether or not a variation in the detected acceleration is caused by a collision, and a final collision routine in which an airbag module is activated when all of results of the first and second collision routines indicate a collision.
Owner:CALSONIC KANSEI CORP

Apparatus and Method for Vehicle Driver Recognition and Customization Using Onboard Vehicle System Settings

A vehicle includes vehicle systems each having driver-selectable vehicle system settings (VSS), and a control system for statistically modeling the VSS to determine an identity of a driver. The control system automatically controls a setting of at least one of the vehicle systems using or based on the identity. The control system statistically models the VSS for the driver over time to produce a historical driver profile (HDP) for the driver, and can automatically update the HDP when said driver manually changes any one of the VSS. An optional driver identification device can verify the identity. A method for controlling a predetermined onboard system of a vehicle includes collecting a set of VSS for a plurality of onboard systems, processing the VSS through a statistical modeling algorithm to determine an identity of a driver of the vehicle, and automatically controlling a predetermined onboard system using the identity of the driver.
Owner:GM GLOBAL TECH OPERATIONS LLC

System and method for detecting and protecting pedestrians

System and method for reacting to an impact involving a motor vehicle in which an anticipatory sensor system assesses the probable severity of the impact based on data obtained prior to the impact and initiates deployment of an external safety device via an actuator in the event an impact above a threshold probable severity is assessed. The anticipatory sensor system includes receivers for receiving waves or energy and a pattern recognition system for analyzing the received waves or energy, or data representative thereof, to assess the probable severity of the impact. The pattern recognition system ascertains the identity of an object from which the waves or energy have been emitted, reflected or generated. The pattern recognition system includes a processor embodying a pattern recognition algorithm designed to provide an output of one of a number of pre-determined identities of the object.
Owner:AMERICAN VEHICULAR SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products