Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

145results about "Fuel energy techologies" patented technology

Parallel-connected inverters with separate controllers having impedance current regulators

A control system (20) for a power converter (22) designed to convert DC power from a source (30) such as a battery, flywheel or fuel cell into AC power. The control system includes an impedance current regulator (106) for providing an impedance current signal to a summing unit (110) where it may be combined with real and reactive current command signals provided from respective sources (62, 64). The resultant current signal provided by the summing unit is provided to a voltage correction unit (112) that uses the resultant current signal in developing a correction voltage signal provided to the power converter. The correction voltage signal contains information used by the power converter in adjusting the real and reactive currents in its output AC power based on the ability of the AC power network to accept changes in current. Multiple power converters having the control system of the present invention may be connected in parallel to a single AC load or multiple AC loads, without the need for a separate control system interconnecting the power converters. The control system may be advantageously incorporated into a distributed generation network and in uninterruptible power systems, whether or not such systems are included in a distributed generation network.
Owner:WEG ELECTRIC CORP

Integrated fuel cell hybrid power plant with controlled oxidant flow for combustion of spent fuel

InactiveUS20050079395A1Reduction of fuelReduction of carbon monoxide emissionFuel cells groupingFuel cell auxillariesElectric forceRecuperator
A hybrid power generation system for generating electrical power comprises a compressor for producing a compressed oxidant and a recuperator in flow communication with the compressor. The hybrid power generation system further comprises a fuel cell assembly comprising a plurality of fuel cells in flow communication with the recuperator to provide the compressed oxidant for the fuel cell assembly. The fuel cell assembly further comprises a cathode inlet for receiving the compressed oxidant, an anode inlet for receiving a fuel stream, an anode outlet in flow communication with an anode exhaust stream and a cathode outlet in flow communication with a cathode exhaust stream, wherein at least a portion of the fuel reacts with the oxidant to produce electrical power. The hybrid power generation system further comprises a tail gas burner in flow communication with the anode outlet and the cathode outlet. The tail gas burner is configured for combusting a mixture of at least a portion of the anode exhaust stream and at least a portion of the cathode exhaust stream and producing a hot compressed gas. A control system is used for controlling the amount of the cathode exhaust stream introduced in the tail gas burner for stable combustion and reduction of fuel and carbon monoxide emission. The hot compressed gas from the tail gas burner is introduced to a turbine, where the hot compressed gas is expanded, thereby producing electrical power and an expanded gas.
Owner:GENERAL ELECTRIC CO

Combined heat and power system

There is described a combined heat and power, or cogeneration, system combining a fuel cell for generating electrical power with a thermal power source, the system comprising: a fuel processor for converting a hydrocarbon fuel into hydrogen in an output stream, the hydrogen rich output stream containing a low content of carbon monoxide; a high temperature hydrogen fuel cell system tolerant to low content of carbon monoxide of up to 5% receiving the output stream and an oxidant fluid stream; and a heat exchange system having a first module associated with the fuel processor and a second module associated with the fuel cell system connected at least in part in series to provide a thermal output.
Owner:HYTEON

Fuel cell power systems and methods of operating fuel cell power systems

Fuel cell power systems and methods of operating fuel cell power systems are described. According to one aspect, a fuel cell power system includes a fuel cell configured to generate electrical energy; switch mode power conditioning circuitry configured to electrically condition the electrical energy generated by the fuel cell, wherein the switch mode power conditioning circuitry comprises a controller configured to monitor an electrical status of the fuel cell and to adjust the conditioning of the electrical energy using the switch mode power conditioning circuitry responsive to the monitoring, wherein the controller is configured to provide a pulse width modulated control signal to control the switching of the switch mode power conditioning circuitry and to vary a duty cycle of the control signal to adjust the conditioning of the electrical energy using the switch mode power conditioning circuitry.
Owner:EMERGENT POWER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products