Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

376results about "Femur" patented technology

Shaped load-bearing osteoimplant and methods of making same

InactiveUS20030039676A1Promotes new host bone tissue formationPermit of mechanical propertySuture equipmentsDental implantsMedicineHard tissue
A load-bearing osteoimplant, methods of making the osteoimplant and method for repairing hard tissue such as bone and teeth employing the osteoimplant are provided. The osteoimplant comprises a shaped, coherent mass of bone particles which may exhibit osteogenic properties. In addition, the osteoimplant may possess one or more optional components which modify its mechanical and / or bioactive properties, e.g., binders, fillers, reinforcing components, etc.
Owner:WARSAW ORTHOPEDIC INC

Inflatable device for use in surgical protocol relating to fixation of bone

Systems for treating a bone, e.g. a vertebral body, having an interior volume occupied, at least in part, by cancellous bone provide a first tool, a second tool, and a third tool. The first tool establishes a percutaneous access path to bone. The second tool is sized and configured to be introduced through the percutaneous access path to form a void that occupies less than the interior volume. The third tool places within the void through the percutaneous access path a volume of filling material. Related methods for treating a bone, e.g. a vertebral body, having an interior volume occupied, at least in part, by cancellous bone provide establishing a percutaneous access path to bone. A tool is introduced through the percutaneous access path and manipulated to form a void that occupies less than the interior volume. A volume of filling material is then placed within the void through the percutaneous access path.
Owner:ORTHOPHOENIX

Systems and methods for treating fractured or diseased bone using expandable bodies

Systems and methods treat fractured or diseased bone by deploying more than a single therapeutic tool into the bone. In one arrangement, the systems and methods deploy an expandable body in association with a bone cement nozzle into the bone, such that both occupy the bone interior at the same time. In another arrangement, the systems and methods deploy multiple expandable bodies, which occupy the bone interior volume simultaneously. Expansion of the bodies form cavity or cavities in cancellous bone in the interior bone volume.
Owner:ORTHOPHOENIX

Inlaid articular implant

A method is provided for performing a total knee arthroplasty. The method includes making a primary incision near a knee joint of a patient and resecting medial and lateral condyles of the femur of the leg to create at least one femoral cut surface. The resecting step is performed without dislocating the knee joint. The method also includes balancing various ligament tensions to obtain desired tension and moving a femoral component of a total knee implant through the primary incision. The method further includes positioning the femoral component with respect to the at least one femoral cut surface.
Owner:BONUTTI SKELETAL INNOVATIONS

Devices and methods for treating defects in the tissue of a living being

InactiveUS7156880B2Provide structural integrityRestore mechanical and architectural and structural competenceSuture equipmentsPeptide/protein ingredientsMedicineHost tissue
An implantable material for deployment in select locations or select tissue for tissue regeneration is disclosed. The implant comprises collagen, ceramics, and or other bio-resorbable materials or additives, where the implant may also be used for therapy delivery. Additionally, the implant may be “matched” to provide the implant with similar physical and / or chemical properties as the host tissue.
Owner:DSM IP ASSETS BV

Controlled architecture ceramic composites by stereolithography

A process for producing a ceramic composite having a porous network. The process includes providing a photocurable ceramic dispersion. The dispersion consists of a photocurable polymer and a ceramic composition. The surface of the dispersion is scanned with a laser to cure the photocurable polymer to produce a photocured polymer / ceramic composition. The photocured composition useful as a polymer / ceramic composite, or the polymer phase can be removed by heating to a first temperature that is sufficient to burn out the photocured polymer. It is then heated to a second temperature that is higher than the first temperature and is sufficient to sinter the ceramic composition to produce a purely ceramic composition having a porous network.Preferably and more specifically, the process uses a stereolithographic technique for laser scanning. The process can form a high quality orthopedic implant that dimensionally matches the bone structure of a patient. The technique relies upon laser photocuring a dense colloidal dispersion into a desired complex three-dimensional shape. The shape is obtained from a CAT scan file of a bone and is rendered into a CAD file that is readable by the stereolithography instrument. Or the shape is obtained directly from a CAD file that is readable by the stereolithography instrument.
Owner:UNITED STATES SURGICAL CORP +2

Medical and dental implant devices for controlled drug delivery

Implantable devices and methods for use in the treatment of osteonecrosisare provided. The device includes at least one implant device body adapted for insertion into one or more channels or voids in bone tissue; a plurality of discrete reservoirs, which may preferably be microreservoirs, located in the surface of the at least one implant device body; and at least one release system disposed in one or more of the plurality of reservoirs, wherein the release system includes at least one drug selected from the group consisting of bone growth promoters, angiogenesis promoters, analgesics, anesthetics, antibiotics, and combinations thereof. The device body may be formed of a bone graft material, a polymer, a metal, a ceramic, or a combination thereof. The device body may be a monolithic structure, such as one having a cylindrical shape, or it may be in the form of multiple units, such as a plurality of beads.
Owner:MICROCHIPS INC

Devices and methods using an expandable body with internal restraint for compressing cancellous bone

Devices and methods compress cancellous bone. In one arrangement, the devices and methods make use of an expandable body that includes an internal restraint coupled to the body. The internal restraint directs expansion of the body. In one arrangement, a method for treating bone inserts the device having the internal restraint inside bone and causes directed expansion of the body in cancellous bone. Cancellous bone is compacted by the directed expansion.
Owner:ORTHOPHOENIX

Bone implant

A method of long bone strengthening and a composite implant for such strengthening. Also disclosed is a kit for building a composite implant in-situ in long bones. In an exemplary embodiment of the invention, the implant comprises a plurality of rigid tensile rods, in matrix of cement and surrounded by a partially porous bag.
Owner:N M B MEDICAL APPL

Systems and methods using expandable bodies to push apart cortical bone surfaces

Systems and methods insert an expandable body in a collapsed configuration into a space defined between cortical bone surfaces. The space can, e.g., comprise a fracture or an intervertebral space. The systems and methods cause expansion of the expandable body within the space, thereby pushing apart the cortical bone surfaces to, e.g., reduce the fracture or push apart adjacent vertebral bodies as part of a therapeutic procedure.
Owner:ORTHOPHOENIX

Skeletal implant

Skeletal implant of the type to be used to connect at least two elements of a skeleton. The skeletal implant includes a first part adapted to be connected to at least one of the at least two elements of the skeleton. A second part is adapted to be connected to another of the at least two elements of the skeleton. A variable volume element is adapted to move the first and second parts with respect to each other. A high-pressure chamber supplies fluid to the variable volume element. A low-pressure chamber receives fluid from the variable volume element. A recharging variable volume element is adapted to communicate with the high-pressure chamber and the low-pressure chamber. The recharging variable volume element is responsive to displacements of corporal parts of a user and recharges the high-pressure chamber with fluid. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
Owner:FRED ZACOUTO

Demineralized bone-derived implants

Selectively demineralized bone-derived implants are provided. In one embodiment, a bone sheet for implantation includes a demineralized field surrounding mineralized regions. In another embodiment, a bone defect filler includes a demineralized cancellous bone section in a first geometry. The first geometry is compressible and dryable to a second geometry smaller than the first geometry, and the second geometry is expandable and rehydratable to a third geometry larger than the second geometry.
Owner:SYNTHES USA

Method and apparatus for reducing femoral fractures

An improved method and apparatus for reducing a hip fracture utilizing a minimally invasive procedure which does not require incision of the quadriceps. A femoral implant in accordance with the present invention achieves intramedullary fixation as well as fixation into the femoral head to allow for the compression needed for a femoral fracture to heal. To position the femoral implant of the present invention, an incision is made along the greater trochanter. Because the greater trochanter is not circumferentially covered with muscles, the incision can be made and the wound developed through the skin and fascia to expose the greater trochanter, without incising muscle, including, e.g., the quadriceps. After exposing the greater trochanter, novel instruments of the present invention are utilized to prepare a cavity in the femur extending from the greater trochanter into the femoral head and further extending from the greater trochanter into the intramedullary canal of the femur. After preparation of the femoral cavity, a femoral implant in accordance with the present invention is inserted into the aforementioned cavity in the femur. The femoral implant is thereafter secured in the femur, with portions of the implant extending into and being secured within the femoral head and portions of the implant extending into and being secured within the femoral shaft.
Owner:ZIMMER TECH INC

Method and apparatus for use of a non-invasive expandable implant

InactiveUS7485149B1Internal osteosythesisJoint implantsEpiphysisEpiphyseal growth plates
The present invention relates to a non-invasive expandable implant utilizing energy from an epiphyseal growth plate of a human long bone to expand the implant. A bone replacement section includes a housing, an expansion shaft, a connection system, and an implant member. An anchoring member is secured to the second bone portion and spaced from the implant member. The expansion shaft is configured to translate a first distance between the housing and the first bone member. Growth of the bone causes an increase of a second distance between an implant portion and the anchoring member. The increase of the second distance causes the anchoring member to exert a force on a connection system causing an increase of the first distance, thus expanding the implant.
Owner:BIOMET MFG CORP

Bone implants with central chambers

InactiveUS7087082B2Easy to implantRestore disc height and natural curvature of spineJoint implantsSpinal implantsBone tissueBone splinters
A bone fusion implant for repair or replacement of bone includes a hollow body formed from at least two bone fragments which are configured and dimensioned for mutual engagement and which are coupled together. The hollow body may be formed of autograft, allograft, or xenograft bone tissue, and may include a core formed of at least one of bone material and bone inducing substances, with the core being disposed in the hollow body.
Owner:SYNTHES USA

Expandable structures for deployment in interior body regions

Apparatus for deploying an expandable structure in interior body regions provide an outer catheter tube, an inner catheter tube sized and configured to be received within the outer catheter tube, and an expandable structure having a distal end and a proximal end. The expandable structure also has a first end region adjacent the distal end and a second end region adjacent the proximal end. The distal end is bonded to the inner catheter tube to form a first bonded region and the proximal end is bonded to the outer catheter tube to form a second bonded region. The first end region is inverted to overlie the first bonded region and the second end region is inverted to overlie the second bonded region.
Owner:ORTHOPHOENIX

Expandable devices and methods for tissue expansion, regeneration and fixation

Expandable devices and methods for treating and enlarging a tissue, an organ or a cavity. The device is composed of a hollow expanding pouch made of a resorbable material or a perforated material that can be attached to a filling element. The pouch can be filled with a biocompatible materials, one or more times in few days interval, after the insertion of the device. While filling the pouch every few days the tissue expands and the filling material if it is bioactive start to function. The devices allow immediate direct contact between the filling material and the tissue. These devices and methods can be used for example for: horizontal and vertical bone augmentation in the jaws, soft tissue augmentation, fixating bone fractures etc.
Owner:KARMON BEN ZION

Method and apparatus for reducing femoral fractures

An improved method and apparatus for reducing a hip fracture utilizing a minimally invasive procedure which does not require incision of the quadriceps. A femoral implant in accordance with the present invention achieves intramedullary fixation as well as fixation into the femoral head to allow for the compression needed for a femoral fracture to heal. To position the femoral implant of the present invention, an incision is made along the greater trochanter. Because the greater trochanter is not circumferentially covered with muscles, the incision can be made and the wound developed through the skin and fascia to expose the greater trochanter, without incising muscle, including, e.g., the quadriceps. After exposing the greater trochanter, novel instruments of the present invention are utilized to prepare a cavity in the femur extending from the greater trochanter into the femoral head and further extending from the greater trochanter into the intramedullary canal of the femur. After preparation of the femoral cavity, a femoral implant in accordance with the present invention is inserted into the aforementioned cavity in the femur. The femoral implant is thereafter secured in the femur, with portions of the implant extending into and being secured within the femoral head and portions of the implant extending into and being secured within the femoral shaft.
Owner:ZIMMER TECH INC

Designed composite degradation for spinal implants

The invention includes a composite material for use in the construction of orthopedic devices and methods for using these composites. The composite material is comprised of at least one filament or cord that can be non-biodegradable and a biodegradable matrix. In other forms the composite material contains at least two components formed of a biodegradable material, which components can be a matrix or a filament or a combination of matrices and filaments. The degradation rate of the two components need not be the same. The composite material is used in the construction of orthopedic devices such as bone plates, bone rods, spinal rods, and laminate sheets that change physical properties in vivo.
Owner:WARSAW ORTHOPEDIC INC

Cortical bone-based composite implants

An implant composed substantially of cortical bone is provided for use in cervical Smith-Robinson vertebral fusion procedures. The implant is derived from allograft or autograft cortical bone sources, is machined to form a symmetrically or asymmetrically shaped (e.g. a substantially "D"-shaped) implant having a canal running therethrough according to methods of this invention, and inserted into the space between adjacent cervical vertebrae to provide support and induce fusion of the adjacent vertebrae. Osteogenic, osteoinductive or osteoconductive materials may be packed into the canal of the implant to expedite vertebral fusion and to allow autologous bony ingrowth.
Owner:REGENERATION TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products