Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

392 results about "Magnetic brain stimulation" patented technology

During a transcranial magnetic stimulation (TMS) procedure, a magnetic field generator, or "coil" is placed near the head of the person receiving the treatment. The coil produces small electric currents in the region of the brain just under the coil via electromagnetic induction.

System and method of treating stuttering by neuromodulation

Stuttering-treatment techniques using neural stimulation and / or drug delivery. One or more electrodes and / or a catheter are implanted adjacent to sites in the brain. A signal generator and the electrode deliver stimulation to a first site. A pump and the catheter deliver one or more therapeutic drugs to a second site. The first and second sites could be: the supplementary motor area, the centromedian circuit, the dorsomedial nuclei, the lateral prefrontal circuit, or other paramedian thalamic and midbrain nuclei. The stuttering treatment could be performed via periodic transcranial magnetic stimulation. A sensor, located near the patient's vocal folds, can be used for generating a signal responsive to activity of the patient's speech-producing muscles. A controller adjusts one or more stimulation parameters in response to the signal from the sensor.
Owner:MEDTRONIC INC

Determining stimulation levels for transcranial magnetic stimulation

Induced movement in a patient is detected and correlated with a TMS stimulating pulse so as to determine the patient's motor threshold stimulation level. Direct visual or audible feedback is provided to the operator indicating that a valid stimulation has occurred so that the operator may adjust the stimulation accordingly. A search algorithm may be used to direct a convergence to the motor threshold stimulation level with or without operator intervention. A motion detector is used or, alternatively, the motion detector is replaced with a direct motor evoked potential (MEP) measurement device that measures induced neurological voltage and correlates the measured neurological change to the TMS stimulus. Other signals indicative of motor threshold may be detected and correlated to the TMS stimulus pulses. For example, left / right asymmetry changes in a narrow subset of EEG leads placed on the forehead of the patient or fast autonomic responses, such as skin conductivity, modulation of respiration, reflex responses, and the like, may be detected. The appropriate stimulation level for TMS studies are also determined using techniques other than motor cortex motor threshold methods. For example, a localized ultrasound probe may be used to determine the depth of cortical tissue at the treatment site. When considered along with neuronal excitability, the stimulation level for treatment may be determined. Alternatively, a localized impedance probe or coil and detection circuit whose Q factor changes with tissue loading may be used to detect cortical depth.
Owner:NEURONETICS

Control and coordination of transcranial magnetic stimulation electromagnets for modulation of deep brain targets

InactiveUS20100185042A1Enhance the electromagnetic field emittedDeeper, more effective Transcranial Magnetic Stimulation (TMS)ElectrotherapyMagnetotherapy using coils/electromagnetsEngineeringMulti coil
Described herein are devices and method for control and coordination of TMS electromagnets for modulation of deep brain targets. For example, described herein are methods and devices for stimulating neural structures within the brain using multi-coil arrays. Also described herein are devices and methods that relate generally to the focusing of magnetic fields generated by electromagnets used for Transcranial Magnetic Stimulation. Devices and methods relating generally to the focusing of magnetic fields generated by electromagnets used for Transcranial Magnetic Stimulation are also described, as well as devices and methods that relate generally to moving and positioning electromagnets generating magnetic fields used for Transcranial Magnetic Stimulation. Finally, also described are devices and methods that relate generally to control of moving, positioning, and activating electromagnets generating magnetic fields used for Transcranial Magnetic Stimulation.
Owner:CERVEL NEUROTECH

Method and device for transcranial magnetic stimulation

The invention relates to a method for stimulating specific areas of a brain using an induction device, comprising the following steps: recording the spatial structure of the head, in particular the brain; generating a simulation model of the induction device; and arranging the induction device relative to the head such that a specific area of the brain determined by means of the simulation model of the induction device is stimulated by a current flowing in the induction device, as well as to a method for stimulating specific areas of a brain using an induction device, comprising the following steps: recording the spatial structure of the head, in particular the brain; generating a simulation model of the head; and arranging the induction device relative to the head such that a specific area of the brain determined by means of the simulation model of the head is stimulated by a current flowing in the induction device, as well as to a device for stimulating specific areas of a brain using an induction device connected to a marker.
Owner:BRAINLAB

Trajectory-based deep-brain stereotactic transcranial magnetic stimulation

The present invention provides for Stereotactic Transcranial Magnetic Stimulation (sTMS) at predetermined locations with the brain or spinal cord and incorporates an array of electromagnets arranged in a specified configuration where selected coils in the array are pulsed simultaneously. Activation of foci demonstrated by functional MRI or other imaging techniques can be used to locate the neural region affected. Imaging techniques can also be utilized to determine the location of the designated targets.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV +1

Method and apparatus for determining the proximity of a TMS coil to a subject's head

A proximity sensor for a transcranial magnetic stimulation (TMS) system detects the proximity of a TMS coil assembly to a position at which the coil is to receive pulses during TMS treatment and provides feedback to the operator so that the operator may adjust the TMS coil assembly as necessary to maintain optimal positioning during treatment. A flexible substrate containing a sensor or sensor array is disposed between the TMS coil assembly and the position such that the coupling of the TMS coil assembly to the position may be detected by the sensor(s). Sensor outputs are processed by signal processing circuitry to provide an indication of whether the TMS coil assembly is properly disposed with respect to the position during TMS treatment. A display may be used to provide an indication of how to adjust the TMS coil assembly to improve the positioning of the TMS coil assembly. On the other hand, a sound generator may be used to generate a sound that indicates to an operator whether the TMS coil assembly is properly positioned at the position. Many different types of sensor devices may be used to detect proximity, including membrane switches, variable resistance sensors, resistive strips, touch screens, pickup loops, fluid displacement sensors, optical sensors, acoustic sensors, inductive coupling sensors, capacitive coupling sensors, temperature sensors, and the like.
Owner:NEURONETICS

Magnetic configuration and timing scheme for transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) is a remarkable tool for probing the brain. However, it is still unclear why specific regions in the cortex are excitable by TMS while others are not. This invention provides methods and tools for the design of efficient magnetic stimulators. Such stimulators can excite neuronal networks that were not sensitive to stimulation until now. Stimulation can be carried out both in-vitro and in-vivo. Novel systems and techniques of this invention will enable both treatment and diagnostics by stimulating regions of the brain or neuronal assemblies that were previously unaffected by TMS.
Owner:YEDA RES & DEV CO LTD

Transcranial magnetic stimulation for improved analgesia

Described herein are methods for neuromodulating brain activity of one or more target brain regions, the methods using Transcranial Magnetic Stimulation (TMS) to produce robust analgesia. In particular, described herein are systems for arranging one or more (e.g., a plurality) of TMS electromagnets in a configuration and applying sufficient energy to neuromodulate the dorsal anterior cingulate gyrus relative to cortical brain regions to significant modulate pain, including the pain of fibromyalgia.
Owner:RIO GRANDE NEUROSCI

Apparatus and methods for delivery of transcranial magnetic stimulation

InactiveUS7087008B2Enhances precision and easeRapid modelingElectrotherapyDiagnosticsLong axisComputer-aided
Disclosed are apparatus and methods for delivery of transcranial magnetic stimulation. The apparatus includes a TMS coil which when energized generates an electric field substantially parallel to a long axis of the coil and substantially normal to a surface of the coil. Furthermore disclosed an apparatus for delivery of TMS in which a coil is adapted to a robotic member for computer-aided control and delivery. Further disclosed are methods of TMS planning and delivery in which subject images are utilized to plan, position and orient the TMS coil for precise delivery. Disclosed also are TMS coils having unique designs to better focus and direct magnetic stimulation.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Neuromodulation of deep-brain targets by transcranial magnetic stimulation enhanced by transcranial direct current stimulation

Described herein are methods, devices and systems for neuromodulation of deep brain targets using a combination of transcranial magnetic stimulation (TMS) and transcranial direct current (DC) stimulation to reduce or eliminate side-effects when modulating one or more deep brain targets. For example, transcranial magnetic stimulation of a deep brain target may be synchronized with modulation of more superficially located cortical brain regions using transcranial direct current stimulation to prevent seizures and other side effects. Systems configured to regulate (or synchronize) the application of transcranial magnetic stimulation of deep brain targets and transcranial direct current stimulation are also described.
Owner:RIO GRANDE NEUROSCI

Method and apparatus for promoting restorative sleep

Brain stimulation is used to promote or induce slow-wave activity thought to be associated with the restorative properties of sleep. In a preferred embodiment, transcranial magnetic stimulation is used to provide neural stimulation at a frequency approximating natural slow-wave activity.
Owner:WISCONSIN ALUMNI RES FOUND

Transcranial stimulation device and method based on electrophysiological testing

Embodiments of the disclosed technology provide a combination electroencephalography and non-invasive stimulation devices. Upon measuring an electrical anomaly in a region of a brain, various non-invasive stimulation techniques are utilized to correct neural activity. Stimulation techniques include transcranial direct current stimulation, transcranial alternating current stimulation and transcranial random noise stimulation, low threshold transcranial magnetic stimulation and repetitive transcranial magnet stimulation. Devices of the disclosed technology may utilize visual, balance, auditory, and other stimuli to test the subject, analyze necessary brain stimulations, and administer stimulation to the brain.
Owner:EVOKE NEUROSCI

Transcranial magnetic stimulation induction coil device and method of manufacture

A transcranial magnetic stimulation induction coil device (“TMS coil device”) is manufactured to contain coil windings of a predetermined size and shape and fixedly positioned at a predetermined location within and orientation in relation to a casing of the TMS coil device. In one embodiment, the coil windings are encased in a casting at a predetermined location within and orientation in relation to the casting, and the casting is fixedly positioned at a predetermined location within and orientation in relation to the casing. The size and shape of the coil windings and the casing within, and the location and orientation of the coil windings in relation to each other and the casing of, the TMS coil device are known with a high level of precision, such that navigated brain stimulation can be performed with the TMS coil device with a high degree of accuracy. In another embodiment, the TMS coil device defines a space interposed between the coil windings and the casing and containing a gas which absorbs heat energy generated at the coil windings, thereby reducing the rate of transfer of heat energy from the coil windings to the casing during operation of the TMS coil device.
Owner:NEXSTIM

Systems and methods for controlling electric field pulse parameters using transcranial magnetic stimulation

ActiveUS20100152522A1Reduce voltageReducing voltage spikes and switching lossesElectrotherapyMagnetotherapy using coils/electromagnetsBody organsPulse parameter
A system and methods for controlling pulse parameters during transcranial magnetic stimulation are provided. Multiple coils are placed on external body parts, and are controlled using an external control unit coupled to a stimulator having fast switches. The timing of the switches, as well as other parameters within the stimulator, determine the pulse parameters, such as pulse shape. The variety of pulse shapes obtainable using such a system and methods provides controlled physiologic effects within an internal body organ.
Owner:YEDA RES & DEV CO LTD

Transcranial magnetic stimulation (TMS) methods and apparatus

Method and devices are provided for treating subjects with Transcranial Magnetic Stimulation (TMS). According to some approaches, the methods and devices are configured for the treatment of ongoing seizures. Other approaches relate to the use of TMS as an antiepileptogenic or for use in determining preferential placement of intracranial probes.
Owner:BETH ISRAEL DEACONESS MEDICAL CENT INC +1

Monophasic multi-coil arrays for trancranial magnetic stimulation

Efficient use of multi-coil arrays for magnetic nerve stimulation depends upon coordinating the coil polarity, the pulse phase and the pulse timing. Monophasic magnetic nerve stimulators produce more precise and predictable results in the stimulation of nerves than biphasic and polyphasic machines, but are less electrically efficient, and consequently limited in terms of pulse train speed. The present invention concerns the coordination of pulse polarity, phase, timing, and strength between multiple magnetic stimulation coils. The goal is to optimize the manner in which multiple coils may be used synergistically to control the activity of underlying neural tissue.
Owner:CERVEL NEUROTECH

Transcranial magnet stimulation of deep brain targets

The treatment of specific neurological and psychiatric illnesses using Transcranial Magnetic Stimulation (TMS) requires that specific neuroanatomical structures are targeted using specific pulse parameters. Described herein are methods of positioning and powering TMS electromagnets to selectively stimulate a deep brain target region while minimizing the impact on non-target regions between the TMS electromagnet and the target. Use of these configurations may involve a combination of physical, spatial and / or temporal summation. Specific approaches to achieving temporal summation are detailed.
Owner:BRAINSWAY

Neural network optimization method based on floating number operation inline function library

Provided is a neural network optimization method based on a floating number operation inline function library, wherein the model of neural unit is Y=1 / (1+exp(-Sigma wi*xi)). The value range of i is 1 to n, and n is the number of neural units. The floating-point operations inline function is structured in a dikaryon chip, namely, function library IQ math Library. In the neural network optimization method based on a floating number operation inline function library, except that the step _IQ(x[i]) is carried out in circulation, the rest steps are all carried out outside the circulation body, and the efficiency of the execution of all the steps as a whole is greatly improved compared with a floating point arithmetic. The neural network optimization method based on a floating number operation inline function library optimizes the transplant of back propagation (BP) neural network on transcranial magnetic stimulation (TMS) 3206464T, and the accuracy of a result is decided through a beginning decimal calibration. On the premise of guaranteeing the accuracy of the result does not influence the recognition rate, BP network awareness efficiency is greatly improved.
Owner:天津市天祥世联网络科技有限公司

Firing patterns for deep brain transcranial magnetic stimulation

ActiveUS20100256438A1Maximally contributes to the overall intended effectFaster pulse rateElectrotherapyMagnetotherapy using coils/electromagnetsMedicinePulse sequence
Methods, devices and systems for Transcranial Magnetic Stimulation (TMS) are provided for synchronous, asynchronous, or independent triggering the firing multiple of electromagnets from either a single power source or multiple energy sources. These methods are particularly useful for stimulation of deep (e.g., sub-cortical) brain regions, or for stimulation of multiple brain regions, since controlled magnetic pulses reaching the deep target location may combine to form a patterned pulse train that activates the desired volume of target tissue. Furthermore, the methods, devices and systems described herein may be used to control the rate of firing of action potentials in one or more brain regions, such as slow or fast rate rTMS. For example, described herein are multiple electromagnetic stimulation sources, each of which are activated independently to create a cumulative effect at the intersections of the electromagnetic stimulation trajectories, typically by means of a computerized calculation.
Owner:BRAINSWAY

Transcranial Magnetic Stimulation Induction Coil Device With Attachment Portion for Receiving Tracking Device

A transcranial magnetic stimulation (“TMS”) induction coil device includes an attachment portion for attachment to a tracking device and providing that the tracking device, when attached to the TMS coil device, is at a predetermined location and orientation in relation to a casing of the TMS coil device. The casing of the TMS coil device also includes a reference point for confirming the accuracy of the attachment of the tracking device to the TMS coil device at the predetermined location and orientation in relation to the casing.
Owner:NEXSTIM

A plurality of stimulating coil transcranial magnetic field stimulator

InactiveCN101234231AIncreased stimulation frequencyAdd stimulation modeElectrotherapyMagnetotherapy using coils/electromagnetsCapacitanceEngineering
The invention relates to a transcranial magnetic field stimulator with a plurality of stimulating coils which comprises a high voltage charging power supply, a current-limiting resistance, an energy dumped capacitor, a reverse current reflowing diode, a thyristor switch, stimulating coils and a microcomputer controller. The stimulator is characterized in that: a stimulating unit comprises a thyristor switch, a stimulating coil and an energy dumped capacitor; N parallel connected stimulating units are connected to the current-limiting resistance and the high voltage charging power supply end; N stimulating units shared use an energy dumped capacitor; the microcomputer controller ends are respectively connected with the triggering ends of the thyristor switch in every stimulating unit; N is more than or equal to 2. A magnetic field stimulator of the invention can substitute a plurality of magnetic field stimulators in using, realizes the in-turn stimulation of a plurality of stimulating coils, and ensures a plurality of parts to get continuous stimulation from the program control. If the number of the energy dumped capacitor is increased, a plurality of coils not only can be stimulated in time sharing, but also achieving synchronous stimulation and couple stimulation.
Owner:WUHAN YIRUIDE MEDICAL EQUIP

Transcranial magnetic stimulation field shaping

Described herein are Transcranial Magnetic Simulation (TMS) systems and methods of using them for emitting focused, or shaped, magnetic fields for TMS. In particular, described herein are arrays of TMS electromagnets comprising at least one primary (e.g., central) TMS electromagnet and a plurality of secondary (e.g., lateral or surrounding) TMS electromagnets. The secondary TMS electromagnets are arranged around the primary TMS electromagnet(s), and are typically configured to be synchronously fired with the primary TMS electromagnets. Secondary TMS electromagnets may be fired at a fraction of the power used to energize the primary TMS electromagnet to shape the resulting magnetic field. The secondary TMS electromagnets may be stimulated at opposite polarity to the primary TMS electromagnet(s). Focusing in this manner may prevent or reduce stimulation of adjacent non-target brain regions.
Owner:BRAINSWAY

Focused magnetic fields

Devices, systems and methods are provided applicable to Transcranial Magnetic Stimulation (TMS) for focusing the magnetic fields generated by electromagnets. In particular, devices, systems and methods including focusing electromagnets and focusing shapes are described.
Owner:CERVEL NEUROTECH

System and method of treating stuttering by neuromodulation

Stuttering-treatment techniques using neural stimulation and / or drug delivery. One or more electrodes and / or a catheter are implanted adjacent to sites in the brain. A signal generator and the electrode deliver stimulation to a first site. A pump and the catheter deliver one or more therapeutic drugs to a second site. The first and second sites could be: the supplementary motor area, the centromedian circuit, the dorsomedial nuclei, the lateral prefrontal circuit, or other paramedian thalamic and midbrain nuclei. The stuttering treatment could be performed via periodic transcranial magnetic stimulation. A sensor, located near the patient's vocal folds, can be used for generating a signal responsive to activity of the patient's speech-producing muscles. A controller adjusts one or more stimulation parameters in response to the signal from the sensor.
Owner:MEDTRONIC INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products