Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

33results about How to "Signal interference" patented technology

Programmable low-voltage differential signaling output driver

The present invention relates to a programmable low-voltage differential signaling (LVDS) output driver. The programmable LVDS output driver may include circuitry for tri-stating the output to allow several programmable LVDS output drivers to be coupled to a single receiver. The programmable LVDS output driver may also include programmable current sources for varying the output current, as well as providing additional current to circuitry within the driver (e.g., impedance circuitry). The programmable LVDS output driver may also include an impedance circuit for adjusting the output impedance of the output driver, while only diverting a small amount of source current. The current diverted by the impedance circuit may be compensated for by increasing the source current from the programmable current sources. The programmable LVDS output driver may also include pre-emphasis circuitry for boosting the edge rates of output signals.
Owner:TAHOE RES LTD

Touch display apparatus

A touch display apparatus including a display panel, a touch panel, an insulation element, and a shielding electrode layer is provided. The touch panel disposed on the display panel includes a substrate, first sensing series, and second sensing series. The insulation element is disposed between the touch panel and the display panel. The shielding electrode layer is disposed between the insulation element and the display panel and includes shielding electrode stripes. Each first sensing series includes first sensing electrodes orthogonally projected on the display panel in a first area. Each second sensing series includes second sensing electrodes orthogonally projected on the display panel in a second area. The first area is separated from an adjacent second area in a distance. Each shielding electrode stripe is orthogonally projected on the display panel in a third area with a width at least identical to the distance.
Owner:DONGGUAN MASSTOP LIQUID CRYSTAL DISPLAY +1

Band allocation method and radio communication system

A radio communication system for covering a service area with a plurality of cells and dividing and allocating a system band of each cell to a mobile station has a division pattern server and a base station. The division pattern server decides a division pattern indicating a pattern of dividing the system band which is commonly applied to a predetermined range to which the plurality of cells belong. The base station divides the system band into two or more bands, using the division pattern decided by the division pattern server, and allocates the band as a pilot transmission frequency band to the mobile station accommodated in the cell constructed by the base station.
Owner:NEC CORP

Touch device and manufacturing method thereof

The present disclosure relates to a touch technology, especially to a touch device and a manufacturing method thereof. The touch device comprises a sensing electrode structure, a shielding layer, a plurality of peripheral connection wires and a grounding wire. The shielding layer surrounds the periphery of the sensing electrode structure. The plurality of peripheral connection wires are located under the shielding layer and electrically connected to the sensing electrode structure. The grounding wire is electrically connected to the shielding layer. Thus, in accordance with the present disclosure, the touch device can shield external interference, and the reliability for operation of the touch circuit can be improved.
Owner:TPK TOUCH SOLUTIONS (XIAMEN) INC

Programmable integrated microphone interface circuit

An integrated circuit for providing programmable microphone interface includes an input terminal for receiving an input signal and an output terminal for providing an output audio signal. In an embodiment, the integrated circuit includes a bias circuit, an amplifier circuit and two feedback circuits. The amplifier circuit includes a first input, a second input, and an output. The first input receives either the input signal or a feedback signal, depending upon mode control signals. The second input receives either the feedback signal or the input signal depending upon the mode control signals. The first feedback circuit is in communication with the output and the first input of the amplifier and includes a first resistor and a first capacitor connected in parallel. The second feedback circuit includes an integrator circuit and provides the feedback signal. The mode control signals can be set in a programmable mode control register.
Owner:WINBOND ELECTRONICS CORP

Programmable integrated microphone interface circuit

An integrated circuit for providing programmable microphone interface includes an input terminal for receiving an input signal and an output terminal for providing an output audio signal. The integrated circuit includes a bias circuit, an amplifier circuit, and two feedback circuits. The bias circuit provides a microphone bias signal to the microphone and provides a sensed microphone signal. The amplifier circuit includes a first input, a second input, and an output. The first input is configured to receive the sensed microphone signal, a first feedback signal, and a second feedback signal. The second input is configured to receive a first reference signal. The feedback circuits are in communication with the output and the first input of the amplifier circuit. In a specific embodiment, the first feedback circuit includes an RC circuit and the second feedback circuit includes an integrator.
Owner:WINBOND ELECTRONICS CORP

Surface-mounted antenna and communication apparatus using same

InactiveUS6297777B1Isolation effectBand of the communication wavelength can be widenedSimultaneous aerial operationsAntenna supports/mountingsLeft halfCoupling
A compact surface-mounted antenna having a wide frequency band. In the surface-mounted antenna, a first radiation electrode is formed on the left-half region of the upper surface of a base dielectric substrate. A multi-layer dielectric substrate is laminated on the upper surface of the base dielectric substrate to be bonded and fixed thereto. A second radiation electrode is formed on the right-half region of the upper surface of the multi-layer dielectric substrate. The first and second radiation electrodes are not vertically opposed to each other. Opposing edges of the first and second radiation electrodes are oblique lines. A feeding signal of a signal source is supplied to the first radiation electrode by coupling from a feeding connection electrode, and then, is supplied to the second radiation electrode from the first radiation electrode by another coupling between the first and second radiation electrodes. A direction in which the first radiation electrode excites is set to be substantially perpendicular to a direction in which the second radiation electrode excites.
Owner:MURATA MFG CO LTD

Chip package structure

A chip package structure is provided. The chip package structure includes a chip, at least one inducting coil, a molding compound and a redistribution circuit layer. The chip includes an active surface, a back surface opposite to the active surface. The inducting coil is disposed around a periphery region of the chip. The molding compound covers the chip and the periphery region and exposes the active surface. The inducting coil is disposed at the molding compound. The redistribution circuit layer covers the active surface, part of the molding compound and part of the inducting coil, and electrically connects the chip.
Owner:CHIPMOS TECH INC

Gain calibration device and method for differential push-pull tracking error signals

A gain calibration device and method for differential push-pull (DPP) tracking error signals in an optical storage system is provided. The gain calibration method processes the synthesized gain (SPPG) of the sub beam in the DPP tracking error signal components with respect to the main beam. The calibration theorem resides in controlling the objective lens of the pick-up head to form a lens-shift or controlling the tilt of the objective lens relative to the optical disc to make the synthesized DPP tracking error signals generate a correspondingly signal variation owing to the optical path deviation. The synthesized gain is calibrated to make the signal variation a minimum value, and the calibrated synthesized gain is the optimum value. In the method and device of the invention, the optimum synthesized gain of the sub beam is precisely computed without the assumptions of equal intensity of the two sub beams and symmetrical positions of the two sub beams with respect to the main beam, and without knowing the ratio of the pitch between the two sub beams to the track pitch.
Owner:MEDIATEK INC

Programmable integrated microphone interface circuit

An integrated circuit for providing programmable microphone interface includes an input terminal for receiving an input signal and an output terminal for providing an output audio signal. The integrated circuit includes a bias circuit, an amplifier circuit, and two feedback circuits. The bias circuit provides a microphone bias signal to the microphone and provides a sensed microphone signal. The amplifier circuit includes a first input, a second input, and an output. The first input is configured to receive the sensed microphone signal, a first feedback signal, and a second feedback signal. The second input is configured to receive a first reference signal. The feedback circuits are in communication with the output and the first input of the amplifier circuit. In a specific embodiment, the first feedback circuit includes an RC circuit and the second feedback circuit includes an integrator.
Owner:WINBOND ELECTRONICS CORP

System and method for acoustic detection of emergency sirens

A system and method for detecting multi-tone sirens despite environmental noises that may be present obtains a microphone input signal, applies, in real time, a time-frequency analysis to the microphone input signal to determine a time-frequency representation, provides at least one multi-tone model that has a plurality of tone duration patterns, performs multi-tone siren detection on the time-frequency representation, the detection based on the at least one multi-tone model and factoring of doppler shifts, and generates a detection result that can be used in systems for automated vehicles.
Owner:CERENCE OPERATING CO

Integrated circuit having a plurality of output drivers

One embodiment of the invention provides an integrated circuit having a plurality of output drivers for driving signals from the integrated circuit and having a plurality of supply terminals to apply a supply voltage to the integrated circuit, the plurality of output drivers being supplied by the supply voltage, wherein the plurality of output drivers have a first output driver group having one or a plurality of the output drivers and a second output driver group having one or a plurality of the output drivers, wherein a first supply line segment is provided to supply the output drivers of the first output driver group, and a second supply line segment is provided to supply the output drivers of the second output driver group, wherein the first supply line segment may be supplied with the supply voltage via a first supply terminal and the second supply line segment may be supplied with the supply voltage via a second supply terminal, wherein the first supply line segment is electrically connected to the second supply line segment via a resistor.
Owner:POLARIS INNOVATIONS

Chip package structure

A chip package structure is provided. The chip package structure includes a chip, at least one inducting coil, a molding compound and a redistribution circuit layer. The chip includes an active surface, a back surface opposite to the active surface. The inducting coil is disposed around a periphery region of the chip. The molding compound covers the chip and the periphery region and exposes the active surface. The inducting coil is disposed at the molding compound. The redistribution circuit layer covers the active surface, part of the molding compound and part of the inducting coil, and electrically connects the chip.
Owner:CHIPMOS TECH INC

Systems and methods to synchronize commands sent to a multi-electrode lead (MEL) with a portion of a cardiac pacing cycle

InactiveUS20110046690A1Avoid problemsPrevents commandHeart stimulatorsElectricityControl circuit
Embodiments of the present invention concern the timing of sending one or more commands to control circuitry of a multi-electrode lead (MEL). In one embodiment, the one or more commands are sent to control circuitry within the MEL during a predetermined portion of a cardiac pacing cycle to avoid potential problems of prior systems that were not synchronized with the cardiac pacing cycle. In one embodiment, the one or more commands are sent when cardiac tissue is refractory from a cardiac pacing pulse, to prevent the command(s) from potentially undesirably stimulating cardiac tissue. The command sending can occur such that the one or more commands are sent between instances when sensing circuitry of the implantable cardiac stimulation device is being used to obtain one or more signals indicative of cardiac electrical activity, to prevent interference between the one or more commands with the signals indicative of cardiac electrical activity that are sensed.
Owner:PACESETTER INC

Electronic apparatus and method for detecting information using the same

An electronic apparatus is provided. The electronic apparatus performs two-way communication with a remote control device, and includes a receiving unit which receives a data signal from the remote control device, a signal processing unit which performs signal processing to convert the received data signal into a pulse signal and a control unit which detects information included in the data signal based on a time interval between starting points of pulse periods which are in a row in the pulse signal.
Owner:SAMSUNG ELECTRONICS CO LTD

Wireless internet connection repeater without signal interference

Disclosed is a wireless Internet connection repeater, and more particularly, a wireless Internet connection repeater without signal interference between a local area wireless communication module (WiFi module) and a broadband wireless communication module (WiMAX module). The wireless Internet connection repeater includes a broadband wireless communication module which includes a master packet control mediator for outputting status information of data transmission / receipt between the broadband wireless communication module and a base station in a broadband wireless network, and a local area wireless communication module which includes a slave packet control mediator for transmitting and receiving data to / from client terminals in synchronization with the status information from the master packet control mediator.
Owner:INTERBRO

Communication terminal and method for controlling data communication

A communication terminal and a method for controlling data communication are provided by embodiments of the invention, relating to the field of communication technology. The communication terminal comprises: a first communication module adapted to, when transmitting a first communication signal to a first antenna, generate a first communication control signal for controlling a second communication module; and a second communication module adapted to receive the first communication control signal, and stop the transmission of a second communication signal between the second communication module and a second antenna in accordance with the first communication control signal. In the embodiments of the invention, respective signals of the first communication module and the second communication module are controlled to be transmitted in different times, thus signal interferences between the communication modules on the terminal are reduced.
Owner:LENOVO SOFTWARE +1

Wireless internet connection repeater without signal interference

Disclosed is a wireless Internet connection repeater, and more particularly, a wireless Internet connection repeater without signal interference between a local area wireless communication module (WiFi module) and a broadband wireless communication module (WiMAX module). The wireless Internet connection repeater includes a broadband wireless communication module which includes a master packet control mediator for outputting status information of data transmission / receipt between the broadband wireless communication module and a base station in a broadband wireless network, and a local area wireless communication module which includes a slave packet control mediator for transmitting and receiving data to / from client terminals in synchronization with the status information from the master packet control mediator.
Owner:INTERBRO

Systems and methods to synchronize commands sent to a multi-electrode lead (MEL) with a portion of a cardiac pacing cycle

Embodiments of the present invention concern the timing of sending one or more commands to control circuitry of a multi-electrode lead (MEL). In one embodiment, the one or more commands are sent to control circuitry within the MEL during a predetermined portion of a cardiac pacing cycle to avoid potential problems of prior systems that were not synchronized with the cardiac pacing cycle. In one embodiment, the one or more commands are sent when cardiac tissue is refractory from a cardiac pacing pulse, to prevent the command(s) from potentially undesirably stimulating cardiac tissue. The command sending can occur such that the one or more commands are sent between instances when sensing circuitry of the implantable cardiac stimulation device is being used to obtain one or more signals indicative of cardiac electrical activity, to prevent interference between the one or more commands with the signals indicative of cardiac electrical activity that are sensed.
Owner:PACESETTER INC

Noise canceller device

In a noise canceller device, interference signal adjustment units adjust delay, phase and amplitude of a signal received by a sub antenna under different conditions to obtain adjustment signals, and subtract the adjustment signals from a signal received by a main antenna to obtain differential signals. An average power calculation unit calculates an average power for each of the differential signals. An optimal condition search unit determines the values of delay, phase and amplitude that result in the minimum average power, and sets the values in an optimal interference signal adjustment unit. The optimal interference signal adjustment unit adjusts the signal received by the sub antenna using optimal values for delay, phase and amplitude to obtain an optimal adjustment signal. A cancellation unit subtracts the optimal adjustment signal from the signal received by the main antenna to remove interference signals, and outputs a desired signal to a host device.
Owner:KOKUSA ELECTRIC CO LTD

High-frequency module

A front-end circuit (1), which is a high-frequency module, includes an input-output terminal (4); a duplexer (14) electrically connected to the input-output terminal (4); an LNA (171) electrically connected to the duplexer (14); a PA (161) electrically connected to the duplexer (14); a matching network (23) provided between the input-output terminal (4) and the duplexer (14) and including an inductor (231); and a matching network provided between the duplexer (14) and the PA (161) and including an inductor (162). The matching network including the inductor (162) is an output matching network configured to perform impedance matching between an output terminal of the PA (161) and the duplexer (14), and the inductor (231) includes a plurality of inductors (231a and 231b) connected in series.
Owner:MURATA MFG CO LTD

Method and system for realizing intelligent shielding to mobile signals

The invention relates to a method and a system for realizing intelligent shielding to mobile signals. The method comprises the steps of: arranging a plurality of field intensity measuring devices at the periphery or / and in an area to be shielded; acquiring the ID of a base station of the area to be shielded and covered by signals; acquiring a field intensity measuring report of each base station reaching signal sent by a mobile station communicating with the base station; acquiring a field intensity measuring report of each base station reaching signal sent by the field intensity measuring devices; comparing the field intensities of all the same base station reaching signals measured by the mobile station and the field intensity measuring devices; determining whether the mobile station in communication is located in the range of the area to be shielded according to a field intensity loss model; and cutting a communication link between the base station and the mobile station, which is in communication and located in the area to be shielded. The invention can not generate signal interference to a mobile station in a non-shielding area.
Owner:刘武强

Communication terminal and method for controlling data communication

A communication terminal and a method for controlling data communication are provided by embodiments of the invention, relating to the field of communication technology. The communication terminal comprises: a first communication module adapted to, when transmitting a first communication signal to a first antenna, generate a first communication control signal for controlling a second communication module; and a second communication module adapted to receive the first communication control signal, and stop the transmission of a second communication signal between the second communication module and a second antenna in accordance with the first communication control signal. In the embodiments of the invention, respective signals of the first communication module and the second communication module are controlled to be transmitted in different times, thus signal interferences between the communication modules on the terminal are reduced.
Owner:LENOVO SOFTWARE +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products