This invention relates to a tread rubber composition for tires with the addition of crosslinked resinous nanoparticles having a high glass transition temperature (Tg) into elastomeric base polymers. The invention demonstrates greatly improved handling performance without deteriorating controllability and stability during high-speed running. The present invention more specifically discloses a tire which is comprised of a generally toroidal-shaped carcass with an outer circumferential tread, two spaced beads, at least one ply extending from bead to bead and sidewalls extending radially from and connecting said tread to said beads; wherein said tread is adapted to be ground-contacting; and wherein the tread is comprised of a rubber composition comprising: (1) a rubbery polymer; (2) from 1 to 30 parts per hundred parts of rubber by weight of pre-crosslinked polymer particles, wherein the pre-crosslinked polymer particles have a mean number average particle size as determined by light scattering which is within the range of 30 nm to 500 nm, wherein the pre-crosslinked polymer is comprised of repeat units that are derived from at least one monomer selected from the group consisting of acrylate monomers, acrylonitrile monomer, and vinyl halide monomers, wherein the pre-croslinked polymer is in the form of core-shell particles having a core and a shell, and wherein the pre-crosslinked polymer has a glass transition temperature which is within the range of 30° C. to 200° C.; and (3) 10 to 150 parts per hundred parts of rubber by weight of at least one filler selected from the group consisting of carbon black and silica.