Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2538results about "Toy aircrafts" patented technology

Using handheld device to control flying object

Method and system for remote control of a drone helicopter and RC plane using a handheld device is disclosed. Piloting commands and actions are performed using the handheld device, which includes a motion sensor module, with gyro-sensor and g-sensor for controlling roll, yaw and pitch of flying object under relative or absolute coordinate system. The gyro-sensor controls both heading and rotation of flying object in place around its yaw by rotating handheld device around its yaw axis; g-sensor controls pitch and roll by rotating handheld device around its pitch axis and roll axes. Upon determining free falling of flying object, throttle is thereby adjusted so as to land it safely. Flying object further has a camera, and video images are transferred wireless to be displayed on touch screen, and image zoom-in and zoom-out are provided via multi-touch of touch screen. RF and IR capability is included for wireless communication.
Owner:CYWEE GROUP

Reconfigurable battery-operated vehicle system

A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
Owner:AEROVIRONMENT INC

Axial-mode linear wind-turbine

A wind harnessing system using a plurality of self supporting airfoil kites 50 for production of useful power. The system comprising multiple airfoil kites 50 in tandem attached to a pivotal control housing 32 by control lines 58L and 58R and support lines 60L and 60R. Control lines 58L and 58R can change length with respect to the length of support lines 60L and 60R to control the airfoil kites' 50 angle-of-attack, pitch angle, direction of flight, and flight speed. The length of control lines 58L and 58R are controlled from ground station 30 by a movable pulley system in control housing 32 to adjust the airfoils' direction to follow a specific flight path 140. Control lines 58R and 58L and support lines 60R and 60L are also wound on a power shaft and pulley system in control housing 32. As the airfoil kites are propelled by the wind at very-high speed, the airfoils generate a powerful AXIAL force. The control lines 58L and 58R and support lines 60L and 60R are then reeled-out under this AXIAL tension causing the power shaft and pulley system in control housing 32 to turn a generator to generate electricity. After airfoil kites 50 have finished their reel-out power stroke 140a, the airfoil's pitch angle is made negative so they can be reeled-in by their control and support lines using a minimum of force along path 140b. Once the airfoils have been rewound to the proper distance, the airfoils are again angled for high-speed operation to generate powerful AXIAL force and reeled-out along 140c to provide another power stroke. The airfoil kites are then reeled-in again along path 140d and the entire process repeats starting with power stroke 140a. Since the force to rewind the airfoils is much less than the force generated during reel-out, there is net power generated.
Owner:RAGNER GARY DEAN

Sky hopper

A vertical takeoff and landing (VTOL) aircraft design particularly suitable as a full-sized aircraft or remote controlled (RC) model aircraft is disclosed. The invention employs lightweight, high strength materials to reduce the power requirements of the propulsion plant. A preferred system of the invention comprises one internal combustion engine able to spit shaft power to four fan units. The fan units further employ counter rotating fan blades for stability. Separate horizontal and vertical tilting mechanisms delivered to the fan units are additionally disclosed. A variation in design is further included wherein electric motors provide the necessary shaft power.
Owner:PAK STEVE

Sky hopper

InactiveUS20060016930A1Increase shaft powerAircraft navigation controlToy aircraftsSkyRemote control
A vertical takeoff and landing (VTOL) aircraft design particularly suitable as a full-sized aircraft or remote controlled (RC) model aircraft is disclosed. The invention employs lightweight, high strength materials to reduce the power requirements of the propulsion plant. A preferred system of the invention comprises one internal combustion engine able to spit shaft power to four fan units. The fan units further employ counter rotating fan blades for stability. Separate horizontal and vertical tilting mechanisms delivered to the fan units are additionally disclosed. A variation in design is further included wherein electric motors provide the necessary shaft power.
Owner:PAK STEVE

Kite configuration and flight strategy for flight in high wind speeds

A crosswind kite system adapted to operate in an alternate mode in high winds. The system may operate at reduced efficiency in high winds in order to moderate loading on the system during those high winds. The system may use multi-element airfoils which are actuated to reduce the coefficient of lift of the airfoils in order to moderate loading in high wind conditions. Other flight aspects may be controlled, including flying the crosswind kite in side slip to induce drag which may lower loading on the system.
Owner:MAKANI TECH LLC

System and Process of Vector Propulsion with Independent Control of Three Translation and Three Rotation Axis

The present invention relates to a propulsion system of a vertical takeoff and landing aircraft or vehicle moving in any fluid or vacuum and more particularly to a vector control system of the vehicle propulsion thrust allowing an independent displacement with six degrees of freedom, three degrees of translation in relation to its centre of mass and three degrees of rotation in relation to its centre of mass. The aircraft displacement ability using the propulsion system of the present invention depends on two main thrusters or propellers and which can be tilted around pitch is (I) by means of tilting mechanisms and, used to perform a forward or backward movement, can be tilted around roll axis (X) by means of tilting mechanisms and, used to perform lateral movements to the right or to the left and to perform upward or downward movements (Z), the main thrusters being further used to perform rotations around the vehicle yaw axis (Z) and around the roll is (X). The locomotion function also uses one or two auxiliary thrusters or propellers and mainly used to control the rotation around the pitch axis, these thrusters or propellers and being fixed at or near the longitudinal is of the vehicle, with there thrust perpendicular or nearly perpendicular to the roll and pitch axis of the vehicle.
Owner:RAPOSO SEVERINO

Rotary-wing vehicle system and methods patent

A rotary-wing apparatus that is aeronautically stable, easy to fly with a multidimensional control, small size, and safe to fly and low cost to produce. The rotary-wing apparatus includes a coaxial counter rotating rotor drive providing lifting power with an inherent aeronautical stability; Auxiliary propellers that face the direction of flight and are located on opposite sides of said coaxial Rotary-wing apparatus and enable flying forwards, backwards and perform yawing; A rotary-wing coaxial helicopter toy that is remotely controlled and safe to fly in doors and out doors, while performing exciting maneuvers even by untrained kids
Owner:ZIMET NACHMAN +1

System and method for controlling a tethered flying craft using tether attachment point manipulation

A tethered airborne electrical power generation system which may utilize a strutted frame structure with airfoils built into the frame to keep wind turbine driven generators which are within the structure airborne. The primary rotors utilize the prevailing wind to generate rotational velocity. Electrical power generated is returned to ground using a tether that is also adapted to fasten the flying system to the ground. The flying system is adapted to be able to use electrical energy to provide power to the primary turbines which are used as motors to raise the system from the ground, or mounting support, into the air. The system may use an attachment mechanism for the tether adapted to move the tether attachment point relative to the flying craft.
Owner:BEVIRT JOEBEN +1

Electrical remote-control and remote-power flying saucer

The purpose of the invention is a light aircraft, remotely supplied and remotely controlled, propelled by electrical motors coupled to propellers, this device being able to perform stationary flight and to move in the three space dimensions in a controlled way. The system includes an aircraft (1), a control unit (3) and a handling unit (4). The aircraft comprises four propellers, each of them driven by a electric motor, a gyroscopic device, tilt sensors, a yaw sensor and an extrenal protective body. The invention also describes the method for the fliht closed loop control. The main purpose of this invention is to provide a enjoyable and educative toy, mainly intended for indoor flight. In a variant of the invention, the aircraft is fitted with a miniaturized video camera, in order to perform remote inspections on buildings or elements difficult to access.
Owner:LOUVEL PHILIPPE

Vertical lift craft

A vertical lift craft includes a vertical lift craft, a powered rotor system including two counter-rotating lift rotors rotatably mounted to the body and a cage fixed to the body and extending about the powered rotor system, the cage including flexible rods extending in an open mesh pattern and mutually attached at a plurality of intersections between the flexible rods and netting extending between the flexible rods to cover the cage. The mesh pattern includes latitudinally and longitudinally extending flexible rods and the cage further includes elastomeric bumpers at the plurality of intersections between flexible rods. A base has axles fixed relative to the body and wheels on the axles.
Owner:GOLLIHER CLAYTON R

Motion-generating illuminated inflatable decoration

A motion-generating illuminated inflatable decoration includes an inflatable body with an inner space mounted on the mounting base, an air pump and a dynamic controlling device. The air pump is mounted in the inner space to pump ambient air into the inner space. The dynamic controlling device is mounted in the inflatable body and includes a pulling cord, a cord driving motor, multiple illuminating elements, a controller and a sensor. The pulling cord interconnects the inflatable body with the cord driving motor and will cause a motion of the inflatable body as the cord driving motor is rotated to change its length. The illuminating elements are mounted on the inflatable body to produce lights. The controller controls the cord driving motor and the illuminating elements to work as the sensor detects a person going through the inflatable decoration to attract the person's attention.
Owner:WANG SHENG CHIEN

Optical sensing system and system for stabilizing machine-controllable vehicles

ActiveUS20050165517A1Stabilising flight movementAvoiding undesirable fluctuationDigital data processing detailsPosition fixationAutomatic controlEngineering
In order to measure the movement of a vehicle, especially an aircraft, an imaging optical system 2 which is to be positioned on the vehicle is used to detect an image of the environment 4, and an optoelectronic shift sensor 3 chip of the type comprising an inherent evaluation unit is used to measure any shift of the image from structures thereof. The shift sensor is equal or similar to the sensor used on an optical mouse. The sensor is positioned in such a way that infinite objects are focused. The measuring signal is evaluated to indicate movements and / or the position of the aircraft. The inventive system can also be used to measure distances e.g. in order to control the flight altitude. The invention further relates to methods for automatically controlling particularly a hovering flight by means of a control loop using optical flow measurement.
Owner:IRON BIRD LLC

Radio control flying toy

There is disclosed a radio control flying toy in which an airframe can be easily floated and a running direction can be easily controlled. The toy is provided with: an airframe 11 formed into a rectangular plate shape having a flat bottom surface on a lower side; first to fourth propellers 16a, 16b, 16c, and 16d which are disposed in four corners forming at least a quadrangular shape on the lower side of the airframe 11 and which feed air toward a bottom-surface side to float the airframe 11; first to fourth driving means 17a, 17b, 17c, and 17d which drive the first to fourth propellers 16a, 16b, 16c, and 16d, respectively; a control unit 20 which individually controls driving outputs of the first to fourth driving means 17a, 17b, 17c, and 17d, respectively; a transmitter 30 for transmitting a control signal for flight from the outside to the control unit 20; and a battery 21 which supplies power to the first to fourth driving means 17a, 17b, 17c, and 17d and the control unit 20.
Owner:TAIYO KOGYO CORPORATION

Multi-rotor safety shield

The Multi-Rotor Safety Shield (MRSS) provides a complete and substantial encasement system which can be secured about a Drone, protecting a multitude of aircraft components from contact with any outside disturbance and which can protect the sensitive components from dust, water, wind, rain, snow, fingers, toes, appendages of any kind, and atmospheric changes as example, from disabling the Drone and can protect people, places or things from high velocity spinning exposed rotor / propellers. The MRSS provides rigid non-permeable platform for attaching or incorporating additional safety devices as found in the Drone industry (or other industries) resulting in a safety device that completely prevents the loss a Drone due to the catastrophic failure of any Drone system or combination of systems which would typically result in rapid decent, and / or uncontrolled flight. The MRSS makes Drones safe near humans and safe to use around public gatherings, stadium events, accident scenes, disaster search and rescue and disaster relief, and indoors for the security and communications markets among others expanding the availability of Drones to further assist humanity.
Owner:ROTOR SHIELD LLC

Power circuit scanning test robot airplane and controlling system

A robot airplane for tour inspection of power line in counterwise driving structure of coxial double propeller uses two engines to control flight stability, GPS and GIS to confirm flight path, computer processor to adjust flight attitute and battery to provide power for motor, transducer and data link system. Its control system consists of navigation system, autonomous planning system, data link system and on line detection system.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)

Method of piloting a multiple rotor rotary-wing drone to follow a curvilinear turn

InactiveUS8473125B2Reduce number of degree of freedomModel aircraftPropellersRemote controlUncrewed vehicle
The respective motors of the drone (10) can be controlled to rotate at different speeds in order to pilot the drone both in attitude and speed. A remote control appliance produces a command to turn along a curvilinear path, this command comprising a left or right turning direction parameter and a parameter that defines the radius of curvature of the turn. The drone receives said command and acquires instantaneous measurements of linear velocity components, of angles of inclination, and of angular speeds of the drone. On the basis of the received command and the acquired measurements, setpoint values are generated for a control loop for controlling motors of the drone, these setpoint values controlling horizontal linear speed and inclination of the drone relative to a frame of reference associated with the ground so as to cause the drone to follow curvilinear path (C) at predetermined tangential speed (u).
Owner:PARROT

Miniature, unmanned aircraft with onboard stabilization and automated ground control of flight path

InactiveUS6847865B2Maintain flight stabilityMinimizing any typeElectrical controlDigital data processing detailsFlight directionTransceiver
A miniature, unmanned aircraft for acquiring and / or transmitting data, capable of automatically maintaining desired airframe stability while operating by remote directional commands. The aircraft comprises a fuselage and a wing, a piston engine and propeller, a fuel supply, at least one data sensor and / or radio transceiver, a microprocessor disposed to manage flight, a radio transceiver for receiving remotely generated flight direction commands, a GPS receiver, a plurality of control surfaces and associated servomechanisms, for controlling flight stabilization and direction, roll, pitch, yaw, velocity, and altitude sensors. The microprocessor uses roll, pitch, yaw, and altitude data to control attitude and altitude of the aircraft automatically, but controls flight direction solely based on external commands. The aircraft does not exceed fifty-five pounds.
Owner:CARROLL ERNEST A

Radio control helicopter toy

The present invention provides a radio control helicopter toy including a mast mounted projecting to the upper side of an airframe so as to be rotated by a main motor, a rotor mounted on the upper part of the mast via a rotor head with the blade surface of a rotor blade capable of inclining, a blade inclining mechanism having an arm with one end part side thereof mounted rotatably on the airframe side and the other end part side thereof is mounted to be driven to approach to the above-mentioned rotor head side by an actuator, for inclining the blade surface of the above-mentioned rotor by the magnetic force generated between magnets mounted on the end part of the arm and the above-mentioned rotor head or between a magnet and a ferromagnetic material, and a receiver loaded on the above-mentioned airframe for controlling the operation of the above-mentioned main motor and the actuator.
Owner:TAIYO KOGYO CORPORATION

Remote-control flying copter and method

A hovering remote-control flying craft having a molded frame assembly includes a plurality of arms extending from a center body with an electric motor and corresponding propeller on each arm. In various embodiments, the motor and propeller are mounted downward-facing at a distal portion of each arm with a motor cover over the motor. The center body can be formed of a two-piece molded structure that sandwiches a circuit board to provide structural support for the frame. The circuit board can include a plurality of tabs that facilitate mounting of wire connectors, and can also provide antennas and emitters for both IR and RF communications. In some embodiments, a removable safety ring protects the propellers from lateral contact.
Owner:QFO LABS

Directionally controllable, self-stabilizing, rotating flying vehicle

A rotating flying vehicle in accordance to an embodiment of the present invention includes a hub having an outer perimeter, an outer ring having a diameter greater than the outer perimeter, a plurality of blades extending outwardly and downwardly connecting the hub to the outer ring, and a plurality of rotor assemblies. Each rotor assembly further includes a motor to spin a propeller, where the propellers are positioned beneath the plurality of blades. The propellers when spinning will cause the hub, blades, and outer ring to sufficiently rotate and generate lift such that the vehicle will fly. The vehicle also includes a system for determining a directional point of reference for the rotor assemblies when the vehicle is rotating and includes a control system to fly the vehicle in a specified direction relative to a remote controller.
Owner:DAVIS STEVEN

Aerial vehicles and methods of use

An aerial vehicle capable of convertible flight from hover to linear flight includes a body having a longitudinal body axis, a plurality of forward wings, a plurality of aft wings, at least one motor, and at least three aerodynamic propulsors driven by the at least one motor. Each forward wing extends a forward wing plane. Each aft wing extends from an aft wing plane. The aerodynamic propulsors are mounted longitudinally between the plurality of forward wings and plurality of aft wings.
Owner:UNIVERSITY OF KANSAS

Method of utilization a flow energy and power installation for it

The author suggests a new method and a new inexpensive, large blade-rope type wind rotor, that will be suspended at high altitude and produce huge quantities of energy. The air installation embodiment includes (FIG. 25): propeller 220, wing 226, rope transmission 229, electric generator 12 located at ground. Water rotors can utilize energy of ocean and sea streams. The invention contains 11 projects: 6 for air, 1 for a river, 3 for the sea and ocean, and 1 for ships. They have a power capacity of up to 60 MgW (air), up to 200 MgW (water) for one unit. The suggested installations have the following advantages: 1. Huge power production capacity-up to 5000-10000 times more than conventional ground-based rotor designs. 2. The rotor operates at high altitude of 1-14 kilometers, where wind has high speed and high stability (permanent flows). 3. The installation is much less expensive compared to conventional currently-employed windmills, partly because no tower is necessary to fix the rotor in space. 4. Wind energy is free -environmentally friendly.
Owner:BOLONKIN ALEXANDER ALEXANDROVICH

Rotocraft power-generation, control apparatus and method

A control system for a power generation apparatus and method may fly a rotorcraft rotary wing at an altitude above the nap of the earth. A tether, suitably strong and flexible, connected to the rotorcraft framing is pulled with a force generated by the rotary wing. The force is transmitted to a ground station that converts the comparatively linear motion of the tether being pulled upward with a lifting force. The linear motion may be transferred to a rotary motion in the ground station to rotate and electrical generator. The tether may be retrieved and re-coiled by controlling the rotorcraft aircraft to basically fly down at a speed and lift force to support recovery of the rotorcraft at a substantially reduced force compared to the larger lifting force in effect during the power-developing payout of the tether. Moreover, the duty cycle of such a system is substantially increased over any terrestrially based or tower-mounted wind turbine mechanisms.
Owner:CALVERLEY GRANT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products