Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

33results about "Model aircraft" patented technology

Remote-control flying copter and method

A hovering remote-control flying craft having a molded frame assembly includes a plurality of arms extending from a center body with an electric motor and corresponding propeller on each arm. In various embodiments, the motor and propeller are mounted downward-facing at a distal portion of each arm with a motor cover over the motor. The center body can be formed of a two-piece molded structure that sandwiches a circuit board to provide structural support for the frame. The circuit board can include a plurality of tabs that facilitate mounting of wire connectors, and can also provide antennas and emitters for both IR and RF communications. In some embodiments, a removable safety ring protects the propellers from lateral contact.
Owner:QFO LABS

Controlled flight of a multicopter experiencing a failure affecting an effector

According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure. The method may comprise the step of identifying a failure wherein the failure affects the torque and/or thrust force produced by an effector, and in response to identifying a failure carrying out the following steps, (1) computing an estimate of the orientation of a primary axis of said body with respect to a predefined reference frame, wherein said primary axis is an axis about which said multicopter rotates when flying, (2) computing an estimate of the angular velocity of said multicopter, (3) controlling one or more of said at least four effectors based on said estimate of the orientation of the primary axis of said body with respect to said predefined reference frame and said estimate of the angular velocity of the multicopter. The step of controlling one or more of said at least four effectors may be performed such that (a) said one or more effectors collectively produce a torque along said primary axis and a torque perpendicular to said primary axis, wherein (i) the torque along said primary axis causes said multicopter to rotate about said primary axis, and (ii) the torque perpendicular to said primary axis causes said multicopter to move such that the orientation of said primary axis converges to a target orientation with respect to said predefined reference frame, and (b) such that said one or more effectors individually produce a thrust force along said primary axis.
Owner:ETH ZZURICH

Controlled flight of a multicopter experiencing a failure affecting an effector

According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure. The method may comprise the step of identifying a failure wherein the failure affects the torque and / or thrust force produced by an effector, and in response to identifying a failure carrying out the following steps, (1) computing an estimate of the orientation of a primary axis of said body with respect to a predefined reference frame, wherein said primary axis is an axis about which said multicopter rotates when flying, (2) computing an estimate of the angular velocity of said multicopter, (3) controlling one or more of said at least four effectors based on said estimate of the orientation of the primary axis of said body with respect to said predefined reference frame and said estimate of the angular velocity of the multicopter. The step of controlling one or more of said at least four effectors may be performed such that (a) said one or more effectors collectively produce a torque along said primary axis and a torque perpendicular to said primary axis, wherein (i) the torque along said primary axis causes said multicopter to rotate about said primary axis, and (ii) the torque perpendicular to said primary axis causes said multicopter to move such that the orientation of said primary axis converges to a target orientation with respect to said predefined reference frame, and (b) such that said one or more effectors individually produce a thrust force along said primary axis.
Owner:ETH ZZURICH

Integrated control/command module for a flying drone

InactiveUS20180039272A1Streamline designStreamline manufactureModel aircraftAutonomous decision making processPower flowComputer module
A module for a drone that integrates an electronic circuit and one or more sensors for the attitude, altitude, speed, orientation and / or position of the drone in the same one-piece housing. The module also integrates an electronic power circuit that receives set command values prepared by the processor of the electronic circuit on the basis of the data provided by the integrated sensors and provides, as an output, corresponding signals for directly supplying current or voltage to the propulsion means of the drone and to the control surfaces.
Owner:PARROT

Method for realizing or improving obstacle avoidance functionality of flying device and flying device using the same

This disclosure relates to a method for realizing obstacle avoidance functionality of a flying device. The method includes: providing a flying device without obstacle avoidance functionality, wherein the flying device includes a flying body and a remote controller; the flying body includes a wireless receiving module, a flying controlling module and an actuator; and second, installing a sensor and a micro controlling module; the wireless receiving module only send a first flying order that is from the remote controller, to the micro controlling module; the sensor only send an obstacle information to the micro controlling module; and the micro controlling module calculates the first flying order and the obstacle information to obtain a second flying order, and sends the second flying order to the flying controlling module; and the flying controlling module controls the flying body to fly according to the second flying order.
Owner:HON HAI PRECISION IND CO LTD

Method for capturing a video, related computer program and electronic system for capturing a video

InactiveCN107734290AMake up for the effects of driftTarget flight directionAircraft componentsTelevision system detailsElectronic systemsFlight direction
The invention relates to a method for capturing a video using a camera on board a fixed-wing drone (14), the camera comprising an image sensor (28), the drone (14) having, during flight, a drift angle(alpha) between the longitudinal axis (42) of the drone (14) and a flight direction (40) of the drone (14). This method comprises: determining the drift angle (alpha) of the drone (14); and obtaining(108) video by image acquisition corresponding to a zone (Zc) with reduced dimensions relative to those of the image sensor, the position (PZc) of the zone being determined (110) as a function of thedrift angle (alpha) of the drone (14).
Owner:PARROT

Driving control device for remote controlled helicopter

A driving control device for a remote controlled helicopter includes an rpm detection unit that detects an rpm of a main rotor, a gyro sensor that detects angular velocities of control axes includingroll, pitch and yaw axes, and a control unit that generates a control signal of a control actuator for controlling movements of the control axes based on the angular velocities detected by the gyro sensor and a steering signal sent from a transmitter. The control unit has information on the gyro sensitivities of the control axes and information on a set rpm of the main rotor which are preset for each of the flight states of the remote controlled helicopter, and corrects the gyro sensitivities based on a difference between the set rpm corresponding to a selected flight state among the flight states and an rpm of the main rotor detected by the rpm detection unit.
Owner:FUTABA CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products