Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

363results about "Particle separator tube details" patented technology

Methods for accurate component intensity extraction from separations-mass spectrometry data

The present invention discloses methods for deconvolving and converting 1D mass spectra to 2D mass spectrum in order to obtain migration time centers and total intensities of the neutral mass envelopes of 2D spectra. The present invention also discloses devices that include a preparation / separation unit coupled to a mass spectrometer unit, and a computer unit capable of deconvolving mass spectra and calculating neutral mass envelopes.
Owner:V&M TCA LP +1

Automated analysis of complex matrices using mass spectrometer

Improved systems, apparatus, methods, and programming useful for the automated analysis of complex compounds using mass spectrometers. Systems, apparatus, methods, and programming according to the invention provide for the automatic determination by a controller 54 of a mass spectrometer 14, 214 of an analysis operation to be implemented using the mass spectrometer, the analysis operation adapted specifically for analysis of one or more substances based contained within a compound based on identification of the compound and / or substances provided by a user of the spectrometer, and a database 66 or other library of information concerning suitable processes or process steps for analyzing substances.
Owner:DH TECH DEVMENT PTE

Personalised mass spectrometer

A personalised mass spectrometer system is described. By fabricating analyser components on a module and including with that module an identifier for that module, it is possible to uniquely associate a user or task with one or more modules. The module is removably receivable within a housing and can be replaced with another module if so required.
Owner:MICROSAIC SYST

Ion detection and parameter estimation for n-dimensional data

Methods and apparatus for LC / IMS / MS analysis involve obtaining noisy raw data from a sample, convolving the data with an artifact-reducing filter, and locating, in retention-time, ion mobility, and mass-to-charge-ratio dimensions, one or more ion peaks of the convolved data.
Owner:WATERS TECH CORP

Precise and thorough background subtraction

A method for identifying and characterizing components of interest in complex samples includes subjecting both a sample and its control samples to chromatography / high resolution mass spectrometry analysis to detect ions of the samples. The method includes defining sections of control sample data within specified chromatographic fluctuation time and mass precision windows around each ion or each group of the same ions of question in the test sample data. The defined sections of the control sample data are examined and the maximal intensities are subtracted from respective ions in the test sample. Components of interest are determined from the resultant data of the test sample. The method can be used for identifying molecular ions and / or their fragment ions for components of interest in complex samples.
Owner:MASSDEFECT TECH

Tandem mass spectrometry method

Multiply charged ions are trapped and accumulated in a spatially limited region before being injected into an ion trap mass spectrometer such as a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS). In the ion trap electron capture dissociation (ECD) and vibrational excitation dissociation are sequentially applied on ions of the same ion ensemble. The first dissociation process does not fragment all primary ions. Following the detection of the dissociation products, the primary ions that remain undissociated undergo the vibrational excitation and again, a part of them dissociate, and the fragments are detected. Thus, the same ion ensemble is used for two fragmentation processes. During these processes, further ions generated in the external ion source are accumulated in the spatially limited region for subsequent analyses.
Owner:BRUKER DALTONIK GMBH & CO KG

Optical bench for a mass spectrometer system

ActiveUS20060076483A1Improve drawing legibility3D rigid printed circuitsPrinted circuit aspectsAnalyteMass analyzer
Mass spectrometer systems for measuring mass / charge ratios of analytes are described. A mass spectrometer system includes a vacuum flange, a PCB base plate coupled to the vacuum flange, and an ion optic assembly coupled to the PCB base plate. The PCB base plate may include signal-processing electronics. The system may include an electrical cable coupled to the PCB base plate for supplying power, control, and I / O to the ion optic assembly and the signal processing electronics. Alternatively, a mass spectrometer system includes a PCB base plate and an ion optic assembly. The PCB base plate has a sealant portion and an electrical portion. The ion optic assembly is coupled to the electrical portion. The system may include a vacuum housing for enclosing the ion optic assembly. The vacuum housing is coupled to the sealant portion of the PCB base plate for sustaining a vacuum while the system is in operation.
Owner:O I CORP

Mass analysis of mobility selected ion populations

Particular aspects provide novel methods for analysis of ion populations, the methods comprising filtering and selecting an ion population using a low-field dual-gate ion mobility spectrometer comprising a drift tube, the spectrometer operating at a pressure of at least 100 Torr, to provide mobility-selected ions. Certain aspects comprise: (i) subsequently accumulating the low-field selected ions in an ion trap (e.g., an MS ion trap) and mass spectrometry analysis; (ii) introducing the low-field selected ions into a high-field ion mobility spectrometer for separating thereby (optionally followed by mass spectrometry); and (iii) introducing the low-field selected ions into an ion trap mass spectrometer, and subsequently into a second low-field ion mobility spectrometer (e.g., a non-dual gate spectrometer operating at less than about 100 Torr). Additional aspects provide novel apparatus and combination thereof for performing the disclosed methods.
Owner:WASHINGTON STATE UNIVERSITY

Electrostatic Trap

An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U′(r,φ,z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U′(r, φ,z) is the result of a perturbation W to an ideal field U(r, φ,z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, φ,z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than about 2π radians over an ion detection period Tm.
Owner:THERMO FINNIGAN

Ultra-thin membrane for chemical analyzer and related method for forming membrane

A method for forming an ultra-thin membrane for use in a chemical analyzer such as a mass spectrometer includes the step of applying a sacrificial blocking layer onto a porous substrate, applying a semi-permeable membrane layer onto the sacrificial blocking layer, and removing the sacrificial blocking layer following cure of the membrane layer. In a preferred version, at least one of the blocking layer and the membrane layer are applied to the porous support by means of spin coating, though other deposition techniques can be employed.
Owner:INFICON GMBH

System and method for collisional activation of charged particles

A collision cell is disclosed that provides ion activation in various selective modes. Ion activation is performed inside selected segments of a segmented quadrupole that provides maximum optimum capture and collection of fragmentation products. The invention provides collisional cooling of precursor ions as well as product fragments and further allows effective transmission of ions through a high pressure interface into a coupled mass analysis instrument.
Owner:BATTELLE MEMORIAL INST

Application of comprehensive calibration to mass spectral peak analysis and molecular screening

A method of performing mass spectral analysis involving at least one of the isotope satellites of at least one ion, comprising acquiring a measured mass spectral response including at least one of the isotope satellites; constructing a peak component matrix with mass spectral response functions; performing a regression analysis between the acquired mass spectral response and the peak component matrix; and reporting one of statistical measure and regression coefficients from the regression analysis for at least one of mass spectral peak purity assessment, ion charge determination, mass spectral deconvolution, and mass shift compensation. A method for the identification of an ion in a sample through acquired MS scans, comprising obtaining an isotope pattern of an ion; constructing a projection matrix based on the isotope pattern or MS scan; projecting the isotope pattern or MS scan onto the projection matrix to calculate at least one of projection residual and projected data; and performing a statistical test on at least one of the projection residual and projected data to determine if the ion exists in the sample or if there is interference. A method which takes advantage of mass defect or isotope pattern analysis, and software and hardware for implementing all aspects of the invention.
Owner:CERNO BIOSCI

Mass spectrometer

A mass spectrometer is disclosed comprising a collision cell wherein ions having substantially different mass to charge ratios are arranged to be transmitted through at least a portion of the collision cell at substantially the same time and with substantially the same velocity preferably by means of one or more transient DC voltages or one or more transient DC voltage waveforms which are applied to the electrodes forming the collision cell so that ions are urged through the collision cell at a constant controlled velocity. By appropriate setting of the velocity of the DC voltage or DC voltage waveform passing along the length of the collision cell an efficient collision cell is provided which is able to fragment ions having considerably different mass to charge ratio at substantially the same time in an optimal manner.
Owner:MICROMASS UK LTD

Method for enhancement of mass resolution over a limited mass range for time-of-flight spectrometry

Novel methods and instrumentation for mass spectrometry are described. Zoom-time of flight mass spectrometry (Zoom-TOF) allows increased mass resolution over a pre-determined specific range of masses. Methods for retrofitting traditional time-of-flight (TOF) and distance of flight (DOF) mass spectrometers are described, as well as novel instruments capable of performing Zoom-TOF analyses.
Owner:BATTELLE MEMORIAL INST +1

High resolution method for using time-of-flight mass spectrometers with orthogonal ion injection

The invention relates to a time-of-flight mass spectrometer in which a fine beam of ions is injected orthogonally into a fast pulser that pulses the ions from the fine ion beam into the spectrometer's drift region for precise determination of mass. The invention consists in increasing the duty cycle of the ions through the use of a high pulser frequency, recording the data cyclically at the same frequency, and assigning slow ions that are only measured in one of the subsequent cycles to the correct initiating pulse through the form of their lines or line patterns.
Owner:BRUKER DALTONIK GMBH & CO KG

System and method for regulating temperature inside an instrument housing

Embodiments of this invention regulate temperature inside an analytical instrument housing using a heat exchanger disposed adjacent an opening in the housing. Coolant is transferred to the heat exchanger to allow the heat exchanger to regulate a temperature of air drawn into the housing and over a temperature sensitive component. In certain embodiments, the coolant is also transferred to other structures and / or components in the instrument to regulate the temperatures of those structures and / or components.
Owner:THERMO FINNIGAN

Mass spectrometer

A mass spectrometry method is disclosed in which a voltage signal from an ion detector is analyzed. The second order differential of each voltage signal was obtained and the onset and end times of the observed voltage peaks were determined. The intensity and average time of each voltage peak are then determined and the intensity and time values ​​are stored. An intermediate composite mass spectrum was then formed by combining the intensity and time values ​​associated with each voltage peak observed from multiple experimental runs. Each time and intensity data pair is then integrated to produce a smooth continuum. The continuum can then be further processed by determining the second differential of the continuum. The start and end times of mass peaks observed in a continuum mass spectrum can be determined. The intensity and mass-to-charge ratio of each mass peak observed in the continuum can then be determined. A final discrete mass spectrum including only the intensity values ​​and mass-to-charge ratios for each ion can then be displayed or output.
Owner:MICROMASS UK LTD

Cascade mass spectrometry method performed in ion trap mass analyzer

The invention belongs to the technical field of mass spectrometry and particularly relates to a cascade mass spectrometry method performed in an ion trap mass analyzer. The cascade mass spectrometry method performed in the ion trap mass analyzer specifically comprises three stages of ion selective segregation, collision induction dissociation and mass scanning and analyzing. According to the cascade mass spectrometry method performed in the ion trap mass analyzer, in the stage of collision induction dissociation, by changing the period of a radio frequency signal, namely changing the frequency of radio-frequency voltage loaded on an ion trap, parent ions with a certain mass-to-charge ratio undergo resonance excitation so as to obtain energy. The high-energy ions which undergo resonance excitation collide with neutral molecules in the ion trap and are dissociated, outcome ions are generated, and the cascade mass spectrometry is achieved. The cascade mass spectrometry method performed in the ion trap mass analyzer has the advantages that only arrangement of software can be used for changing the scanning period of the stage of collision induction dissociation in order to achieve collision induction dissociation, and thus, an experiment device and a method of cascade mass spectrometry can be obviously simplified.
Owner:FUDAN UNIV

Ion fragmentation by electron transfer in ion traps

The invention relates to a method and instrument for the fragmentation of large molecular analyte ions, preferably biopolymer ions, by reactions between multiply charged positive analyte ions and negative reactant ions in RF quadrupole ion traps. Some of these reactions involve electron transfer reactions with subsequent dissociation of the biopolymer analyte ions, and some involve the loss of a proton, leading to stable product ions. The invention can use any type of ion traps, particularly three-dimensional RF quadrupole ion traps, for the reactions between positive and negative ions. The fragmentation yield can be increased because ions that remain stable as radical cations after transfer of an electron are further fragmented by collisionally induced fragmentation, forming fragment ions that are typical of electron transfer, and not those typical of collisionally induced fragmentation. The invention preferentially introduces positive ions and negative ions into the ion trap sequentially through the same aperture.
Owner:BRUKER DALTONIK GMBH & CO KG

Ion mobility spectrometer with substance collector

A method for operating an ion mobility spectrometer that comprises a measuring tube, a substance collector and a membrane inlet, the measuring tube, the substance collector and the membrane inlet defining a closed internal gas circuit, comprising separating the closed internal gas circuit from an external sample gas flow through the membrane inlet, transferring circulating gas containing an analyte substance from the membrane inlet to the substance collector, the analyte substance accumulated in the substance collector, releasing the accumulated analyte substances, and transferring the released analyte substances to the measuring tube.
Owner:BRUKER OPTICS GMBH & CO KG

Low temperature plasma probe and methods of use thereof

The present invention generally relates to a low temperature plasma probe for desorbing and ionizing at least one analyte in a sample material and methods of use thereof. In one embodiment, the invention generally relates to a low temperature plasma probe including: a housing having a discharge gas inlet port, a probe tip, two electrodes, and a dielectric barrier, in which the two electrodes are separated by the dielectric barrier, in which application of voltage from a power supply generates a low temperature plasma, and in which the low temperature plasma is propelled out of the discharge region by the electric field and / or the discharge gas flow.
Owner:PURDUE RES FOUND INC

Analytical Instruments, Assemblies, and Methods

Person-portable mass analysis instrumentation configured to perform nultidimensional mass analysis is provided. Mass analysis instrumentation can include a housing encompassing components of the instrumentation with the housing of the instrumentation defining a space having a volume of equal to or less than about 100,000 cm3. Instrument assemblies are also provided that can include a housing coupled to an instrument component isolation assembly, wherein the component isolation assembly is isolated from an environment exterior to the housing. Exemplary instrument assemblies can include at least first and second components configured to provide analysis with a housing of the instrument at least partially encompassing the first and second components and the first component being rigidly affixed to the housing. An isolation assembly can also be provided that is rigidly affixed to the second component with the isolation assembly being isolated from received inputs of the housing.
Owner:FLIR DETECTION

Method of Processing Mass Spectrometry Data

A method of processing Fourier Transform Mass Spectrometry (FTMS) data comprises carrying out a Fourier Trans-form of a part of a time domain transient and identifying from that transformed data signal peaks representative of the presence of ions. Once the peaks have been identified, the full transient is then transformed, and the peaks identified in the partial transient transform are used to locate true peaks in the transformed full transient. The number of ‘false’ peaks resulting from random noise has been found to correlate to the resolution, so that using a partial transient to identify true peaks reduces the risk of false peaks being included; nevertheless this information can then be applied to the full data set when transformed. As an alternative, different parts of the full data set can be transformed and then correlated; because any noise will be random, false peaks should occur at different places in the two partial transforms.
Owner:THERMO FINNIGAN

Ion trap for cooling ions

A method of changing the kinetic energy of ions is provided, comprising: trapping ions in a trapping region of an ion trap; and directing a beam of gas through the trapping region, so as to change the kinetic energy of the trapped ions thereby. Also provided is a method of separating ions, the method comprising: causing ions to enter a trapping region of an ion trap along a first axis of the trapping region; directing a beam of gas along the first axis and applying an electric potential in the direction of the first axis so as to cause separation of the ions based on their ion mobility. An ion trap and a mass spectrometer for performing the methods are also provided.
Owner:THERMO FISHER SCI BREMEN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products