Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4320results about "Electrodialysis" patented technology

Non-planar microstructures for manipulation of fluid samples

This invention comprises an apparatus and method for the manipulation of materials, including particles, cells, macromolecules, such as proteins, nucleic acids and other moieties, in fluid samples. The apparatus comprises an enclosed chamber on a chip having an internal microstructure with surface area substantially greater than the facial surface area of the internal structure. Generally the internal microstructure comprises a continuous network of channels, each of which has a depth substantially greater than its width. The network may comprise a single channel, a single channel with multiple branches, multiple channels, multiple channels with multiple branches, and any combination thereof. The internal structure may present an inert, non-reactive surface, or be coated with a reactive ligand, or be electrically conductive and optionally be coated with an electrical insulator. Discrete portions of the internal structure may differ in structural and surface properties. Multiple chips may be linked together to create a multiplexed array of chambers, optionally linked to other analytical devices.
Owner:CEPHEID INC

Capillary electroflow apparatus and method

The present invention concerns an apparatus for conducting a microfluidic process. The apparatus comprises integral first and second plates. The first plate comprises an array of sample receiving elements for receiving a plurality of samples from an array of sample containers and dispensing the samples. The second plate comprises a planar array of microfluidic networks of cavity structures and channels for conducting a microfluidic process. Also disclosed is a method for processing an array of samples. At least a portion of each sample in an array of sample wells is simultaneously transferred to a corresponding array of microfluidic networks of cavity structures and channels by means of a corresponding array of sample receiving elements that is in integral fluid communication with the array of microfluidic networks. The samples are then processed. Also disclosed is a device for conducting a microfluidic process wherein the device comprising a planar substrate having a planar array of microfluidic networks of cavity structures and channels for conducting a microfluidic process. A plurality of such devices may be present on a continuous sheet. The invention further includes kits for carrying out microfluidic processes comprising an apparatus as described above.
Owner:ACLARA BIOSCIENCES INC

Apparatus and method for transferring liquids

The present invention concerns devices, apparatus and methods for transferring liquids. One aspect of the present invention is a device comprising a plate having a plurality of transfer elements. Each of the transfer elements comprises an aperture in the plate where the aperture is capable of being electrically activated. The plate has one of more attaching elements for attaching the plate to a multiwell plate to form a sealed system except for the apertures of the transfer elements. Usually, the device is adapted for sealing attachment to a multiwell plate. In a method in accordance with the present invention a quantity of liquid is disposed to a second side of a plate having a plurality of apertures in the plate. The apertures are capable of being electrically activated. The liquid is present in a closed well except for the apertures in the plate. To simultaneously expel liquid from the apertures, the apertures are electrically activated. Also disclosed are kits comprising a device in accordance with the present invention.
Owner:MONOGRAM BIOSCIENCES

Methods and systems for control of microfluidic devices

The present invention provides control methods, control systems, and control software for microfluidic devices that operate by moving discrete micro-droplets through a sequence of determined configurations. Such microfluidic devices are preferably constructed in a hierarchical and modular fashion which is reflected in the preferred structure of the provided methods and systems. In particular, the methods are structured into low-level device component control functions, middle-level actuator control functions, and high-level micro-droplet control functions. Advantageously, a microfluidic device may thereby be instructed to perform an intended reaction or analysis by invoking micro-droplet control function that perform intuitive tasks like measuring, mixing, heating, and so forth. The systems are preferably programmable and capable of accommodating microfluidic devices controlled by low voltages and constructed in standardized configurations. Advantageously, a single control system can thereby control numerous different reactions in numerous different microfluidic devices simply by loading different easily understood micro-droplet programs.
Owner:HANDYLAB

Small object moving on printed circuit board

A printed circuit board based digital or droplet microfluidic system and method for producing such microfluidic system are disclosed. The digital microfluidic device comprises a printed circuit board having a substrate and a plurality of electrode pads disposed on the top surface of the substrate in a rectangular array. A via extends from each electrode pad through the substrate to other locations on the substrate . A dielectric layer is disposed on the electrode pads. Droplets may be manipulated using electrowetting principles and others by applying a voltage to the desired electrodes. Each electrode pad can be controlled directly and independently from the other electrode pads to modify the surface wettability of the dielectric layer in the vicinity of the electrode pad by applying a voltage to the desired electrode pad(s). In this way, droplets may be formed, moved, mixed, and / or divided or other small objects manipulated while in air or immersed in a liquid on the dielectric surface.
Owner:RGT UNIV OF CALIFORNIA

Methods for manipulating moieties in microfluidic systems

InactiveUS7081192B1Simplification and standardization of designExpand and enhance capabilityBioreactor/fermenter combinationsElectrolysis componentsStereochemistryPHYSICAL FORCES
This invention relates generally to the field of moiety or molecule manipulation in a chip format. In particular, the invention provides a method for manipulating a moiety in a microfluidic application, which method comprises: a) coupling a moiety to be manipulated onto surface of a binding partner of said moiety to form a moiety-binding partner complex; and b) manipulating said moiety-binding partner complex with a physical force in a chip format, wherein said manipulation is effected through a combination of a structure that is external to said chip and a structure that is built-in in said chip, thereby said moiety is manipulated.
Owner:AVIVA BIOSCI

Microfluidic devices and methods of use

A microfluidic device comprises pumps, valves, and fluid oscillation dampers. In a device employed for sorting, an entity is flowed by the pump along a flow channel through a detection region to a junction. Based upon an identity of the entity determined in the detection region, a waste or collection valve located on opposite branches of the flow channel at the junction are actuated, thereby routing the entity to either a waste pool or a collection pool. A damper structure may be located between the pump and the junction. The damper reduces the amplitude of oscillation pressure in the flow channel due to operation of the pump, thereby lessening oscillation in velocity of the entity during sorting process. The microfluidic device may be formed in a block of elastomer material, with thin membranes of the elastomer material deflectable into the flow channel to provide pump or valve functionality.
Owner:CALIFORNIA INST OF TECH

Electrophoretic medium with improved stability

An electrophoretic medium comprises a liquid and at least one particle disposed within the liquid and capable of moving therethrough on application of an electric field to the medium. The medium further comprises a free radical scavenger selected from the group consisting of (a) stable free radicals; and (b) polymeric free radical scavengers comprising a plurality of free radical scavenging groups attached to a polymeric chain. The medium is desirably encapsulated.
Owner:E INK CORPORATION

Method and apparatus for programmable fluidic processing

A method and apparatus for microfluidic processing by programmably manipulating a packet. A material is introduced onto a reaction surface and compartmentalized to form a packet. A position of the packet is sensed with a position sensor. A programmable manipulation force is applied to the packet at the position. The programmable manipulation force is adjustable according to packet position by a controller. The packet is programmably moved according to the programmable manipulation force along arbitrarily chosen paths.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Microfluidic chip having integrated electrodes

InactiveUS6939451B2Reduces the formation of air bubblesSludge treatmentFixed microstructural devicesElectrochemical detectorNorbornene
A microfluidic device having integrated components for conducting chemical operations. Depending upon the desired application, the components include electrodes for manipulating charged entities, heaters, electrochemical detectors, sensors for temperature, pH, fluid flow, and other useful components. The device may be fabricated from a plastic substrate such as, for example, a substantially saturated norbornene based polymer. The components are integrated into the device by adhering an electrically conductive film to the substrate. The film may be made of metal or an electrically conducting ink and is applied to the device through metal deposition, printing, or other methods for applying films. Methods for reducing bubble formation during electrokinetic separation and methods for heating material in a microfluidic device are also disclosed.
Owner:MONOGRAM BIOSCIENCES

Microfabricated integrated DNA analysis system

Methods and apparatus for genome analysis are provided. A microfabricated structure including a microfluidic distribution channel is configured to distribute microreactor elements having copies of a sequencing template into a plurality of microfabricated thermal cycling chambers. A microreactor element may include a microcarrier element carrying the multiple copies of the sequencing template. The microcarrier element may comprise a microsphere. An autovalve at an exit port of a thermal cycling chamber, an optical scanner, or a timing arrangement may be used to ensure that only one microsphere will flow into one thermal cycling chamber wherein thermal cycling extension fragments are produced. The extension products are captured, purified, and concentrated in an integrated oligonucleotide gel capture chamber. A microfabricated component separation apparatus is used to analyze the purified extension fragments. The microfabricated structure may be used in a process for performing sequencing and other genetic analysis of DNA or RNA.
Owner:RGT UNIV OF CALIFORNIA

Miniature support for thin films containing single channels or nanopores and methods for using same

Single-channel thin film devices and methods for using the same are provided. The subject devices comprise cis and trans chambers connected by an electrical communication means. At the cis end of the electrical communication means is a horizontal conical aperture sealed with a thin film that includes a single nanopore or channel. The devices further include a means for applying an electric field between the cis and trans chambers. The subject devices find use in applications in which the ionic current through a nanopore or channel is monitored where such applications include the characterization of naturally occurring ion channels, the characterization of polymeric compounds, and the like.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE +1

Method and apparatus for real-time feedback control of electrical manipulation of droplets on chip

A device for generating droplets includes a substrate comprising a reservoir site configured to hold a liquid and including a first electrode, a droplet creation site including a second electrode, and droplet separation site disposed between the reservoir site and the droplet creation site and containing an electrode. The device includes control circuitry operatively coupled to the first, second, and third electrodes. The control circuitry is configured to measure the fluid volume on the electrodes and independently adjust an applied voltage to increase / decrease the quantity of fluid. The device can move fluid onto the creation site or back onto to the reservoir site. When the fluid volume is at the desired value or range, a driving voltage is delivered to the first and second electrodes to form a new droplet. The device may generate droplets having a uniform or user-defined size smaller than the electrode.
Owner:RGT UNIV OF CALIFORNIA

Inline-injection microdevice and microfabricated integrated DNA analysis system using same

Methods and microfluidic circuitry for inline injection of nucleic acids for capillary electrophoresis analysis are provided. According to various embodiments, microfabricated structures including affinity-based capture matrixes inline with separation channels are provided. The affinity-based capture matrixes provide inline sample plug formation and injection into a capillary electrophoresis channel. Also provided are methods and apparatuses for a microbead-based inline injection system for DNA sequencing.
Owner:RGT UNIV OF CALIFORNIA

Device for controlling the displacement of a drop between two or several solid substrates

The invention concerns a device for reversibly displacing at least one volume of liquid (10) under the effect of an electrical control, comprising first electrically conductive means (8), second electrically conductive means (4), and means for inducing a reversible displacement of a volume of liquid, from the first to the second electrically conductive means, without contact with said conductive means during the displacement.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES +1

Droplet-based nucleic acid amplification device, system, and method

The present invention relates to a droplet-based nucleic acid amplification device, system, and method. According to one embodiment, a droplet microactuator is provided and includes: (a) a substrate comprising electrodes for conducting droplet operations; and (b) one or more temperature control means arranged in proximity with one or more of the electrodes for heating and / or cooling a region of the droplet microactuator and arranged such that a droplet can be transported on the electrodes into the region for heating.
Owner:DUKE UNIV +1

Method for using magnetic particles in droplet microfluidics

Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.
Owner:RGT UNIV OF CALIFORNIA

Method and Apparatus Using Electric Field for Improved Biological Assays

Disclosed are a method and apparatus that use an electric field for improved biological assays. The electric field is applied across a device having wells, which receive reactants, which carry a charge. The device thus uses a controllable voltage source between the first and second electrodes, which is controllable to provide a positive charge and a negative charge to a given electrode. By controlled use of the electric field charged species in a fluid in a fluid channel are directed into or out of the well by an electric field between the electrodes. The present method involves the transport of fluids, as in a microfluidic device, and the electric field-induced movement of reactive species according to various assay procedures, such as DNA sequencing, synthesis or the like.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Carbon Dioxide Capture and Mitigation of Carbon Dioxide Emissions

The present invention describes methods and systems for extracting, capturing, reducing, storing, sequestering, or disposing of carbon dioxide (CO2), particularly from the air. The CO2 extraction methods and systems involve the use of chemical processes, mineral sequestration, and solid and liquid sorbents. Methods are also described for extracting and / or capturing CO2 via condensation on solid surfaces at low temperature.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK +1

Multi-layer cable design and method of manufacture

A novel method of designing and fabricating flexible and lightweight cable [100] having a central conductor [110], a dielectric layer [130], an outer conductor [150] and an insulation coating [170] using thin film technology is disclosed. The dielectric layer [130] is ‘grown’ on dielectric layer [130] using electrophoretic deposition to a specified thickness, based upon its intended use. It may include nano-diamonds. Ion beam assisted deposition is used to metalize the cable dielectric layer [130]. This may be ion beam assisted sputtering, ion beam assisted evaporative deposition or ion beam assisted cathodic arc deposition. In an alternative embodiment, the outer conductor may be etched to provide greater flexibility, or to add a piezoelectric layer. The central conductor [110] may be created from dielectric fibers [113] which are metalized as described above. The piezoelectric layer added to create ultrasonic transducer cables.
Owner:RAZAVI ALI

Universal sample preparation system and use in an integrated analysis system

The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and / or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.
Owner:INTEGENX
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products