Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

41 results about "Protein design" patented technology

Protein design is the rational design of new protein molecules to design novel activity, behavior, or purpose, and to advance basic understanding of protein function. Proteins can be designed from scratch (de novo design) or by making calculated variants of a known protein structure and its sequence (termed protein redesign). Rational protein design approaches make protein-sequence predictions that will fold to specific structures. These predicted sequences can then be validated experimentally through methods such as peptide synthesis, site-directed mutagenesis, or artificial gene synthesis.

Protein design automation for protein libraries

The invention relates to the use of protein design automation (P DA) to generate computationally prescreened secondary libraries of proteins, and to methods and compositions utilizing the libraries.
Owner:XENCOR

Expression of Cry3B insecticidal protein in plants

InactiveUS20030115630A1Easy to controlSeason long protectionBiocideBacteriaActive proteinAmino acid
The present invention discloses methods and compositions comprising a group of novel expression cassettes which provide significantly improved levels of accumulation of Coleopteran inhibitory Cry3B and Cry3B variant amino acid sequences when these are expressed in plants. The preferred embodiments of the invention provide at least up to ten fold higher levels of insect controlling protein relative to the highest levels obtained using prior compositions. In particular, transgenic maize expressing higher levels of a protein designed to exhibit increased toxicity toward Coleopteran pests deliver superior levels of insect protection and are less likely to sponsor development of populations of target insects that are resistant to the insecticidally active protein.
Owner:MONSANTO TECH LLC

Method for designing proteins on basis of polarizable force fields and pso (particle swarm optimization)

The invention relates to a method for designing proteins on the basis of polarizable force fields and pso (particle swarm optimization). The method includes steps of acquiring a plurality of proteins by the aid of a protein design template; optimizing each protein, in other words, searching certain rotamers in a rotamerlib, and creating a temporary particle by the aid of each found rotamer; computing the fitness of each temporary particle, and updating local optimal particles and neighbor optimal particles according to the fitness of each temporary particle; updating positions and speeds of all non-temporary particles; comparing the positions of all the neighbor optimal particles to acquire the global optimal positions; searching side-chain conformation combined spaces by the aid of particle swarms to acquire the optimized proteins. Each certain rotamer is the closest to sub-vectors of the corresponding particle which continuously moves in a 4n (four-dimensional) space. The method has the advantages that discrete problems are solved by the aid of pso, and the polarizable force fields are used as evaluation foundations by the aid of the high efficiency of pso; modification on the proteins can be predicted theoretically, and the proteins can be screened theoretically.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products