Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1026 results about "Image transformation" patented technology

Joint and cartilage diagnosis, assessment and modeling

Methods are disclosed for assessing the condition of a cartilage in a joint and assessing cartilage loss, particularly in a human knee. The methods include converting an image such as an MRI to a three dimensional map of the cartilage. The cartilage map can be correlated to a movement pattern of the joint to assess the affect of movement on cartilage wear. Changes in the thickness of cartilage over time can be determined so that therapies can be provided. The amount of cartilage tissue that has been lost, for example as a result of arthritis, can be estimated.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Systems and methods for synthesizing high resolution images using super-resolution processes

Systems and methods in accordance with embodiments of the invention are disclosed that use super-resolution (SR) processes to use information from a plurality of low resolution (LR) images captured by an array camera to produce a synthesized higher resolution image. One embodiment includes obtaining input images using the plurality of imagers, using a microprocessor to determine an initial estimate of at least a portion of a high resolution image using a plurality of pixels from the input images, and using a microprocessor to determine a high resolution image that when mapped through the forward imaging transformation matches the input images to within at least one predetermined criterion using the initial estimate of at least a portion of the high resolution image. In addition, each forward imaging transformation corresponds to the manner in which each imager in the imaging array generate the input images, and the high resolution image synthesized by the microprocessor has a resolution that is greater than any of the input images.
Owner:FOTONATION LTD

Camera device with selectable image paths

A combination mobile terminal and camera with multiple light apertures in the housing. One aperture is disposed on a front side of the housing while another aperture is disposed on a rear side of the housing. The device has an image sensor disposed within the housing for converting images formed by light directed onto the image sensor into electrical signals. The device also has a movable optical system for selectively directing light passing through one of the light apertures onto the image sensor. The device also includes an image processor coupled to an output of the image sensor for processing the electrical signals from the image sensor to produce image signals. The device also has a position detector to detect the position of the movable optics and for directing the image processor to invert the images as needed.
Owner:TELEFON AB LM ERICSSON (PUBL)

View projection matrix based high performance low latency display pipeline

A projection system uses a transformation matrix to transform a projection image p in such a manner so as to compensate for surface irregularities on a projection surface. The transformation matrix makes use of properties of light transport relating a projector to a camera. A display pipeline of user-supplied image modification processing modules are reduced by first representing the processing modules as multiple, individual matrix operations. All the matrix operations are then combined with, i.e., multiplied to, the transformation matrix to create a modified transformation matrix. The created transformation matrix is then used in place of the original transformation matrix to simultaneously achieve both image transformation and any pre and post image processing defined by the image modification processing modules.
Owner:SEIKO EPSON CORP

Method and apparatus for transforming coordinate systems in a telemanipulation system

In a telemanipulation system for manipulating objects located in a workspace at a remote worksite by an operator from an operator's station, such as in a remote surgical system, the remote worksite having a manipulator with an end effector for manipulating an object at the workspace, such as a body cavity, a controller including a hand control at the control operator's station for remote control of the manipulator, an image capture device, such as a camera, and image output device for reproducing a viewable real-time image, the improvement wherein a position sensor associated with the image capture device senses position relative to the end effector and a processor transforms the viewable real-time image into a perspective image with correlated manipulation of the end effector by the hand controller such that the operator can manipulate the end effector and the manipulator as if viewing the workspace in true presence. Image transformation according to the invention includes translation, rotation and perspective correction.
Owner:SRI INTERNATIONAL

Systems and methods for synthesizing high resolution images using super-resolution processes

Systems and methods in accordance with embodiments of the invention are disclosed that use super-resolution (SR) processes to use information from a plurality of low resolution (LR) images captured by an array camera to produce a synthesized higher resolution image. One embodiment includes obtaining input images using the plurality of imagers, using a microprocessor to determine an initial estimate of at least a portion of a high resolution image using a plurality of pixels from the input images, and using a microprocessor to determine a high resolution image that when mapped through the forward imaging transformation matches the input images to within at least one predetermined criterion using the initial estimate of at least a portion of the high resolution image. In addition, each forward imaging transformation corresponds to the manner in which each imager in the imaging array generate the input images, and the high resolution image synthesized by the microprocessor has a resolution that is greater than any of the input images.
Owner:FOTONATION LTD

Extended color processing on pelican array cameras

Systems and methods for extended color processing on Pelican array cameras in accordance with embodiments of the invention are disclosed. In one embodiment, a method of generating a high resolution image includes obtaining input images, where a first set of images includes information in a first band of visible wavelengths and a second set of images includes information in a second band of visible wavelengths and non-visible wavelengths, determining an initial estimate by combining the first set of images into a first fused image, combining the second set of images into a second fused image, spatially registering the fused images, denoising the fused images using bilateral filters, normalizing the second fused image in the photometric reference space of the first fused image, combining the fused images, determining a high resolution image that when mapped through a forward imaging transformation matches the input images within at least one predetermined criterion.
Owner:FOTONATION LTD

Real-time panoramic image stitching method of aerial videos shot by unmanned plane

ActiveCN102201115ARealize the transformation relationshipQuickly achieve registrationTelevision system detailsImage enhancementGlobal Positioning SystemTime effect
The invention discloses a real-time panoramic image stitching method of aerial videos shot by an unmanned plane. The method comprises the steps of: utilizing a video acquisition card to acquire images which are transmitted to a base station in real time by an unmanned plane through microwave channels, carrying out key frame selection on an image sequence, and carrying out image enhancement on key frames; in the image splicing process, firstly carrying out characteristic detection and interframe matching on image frames by adopting an SURF (speeded up robust features) detection method with good robustness; then reducing the series-multiplication accumulative errors of images in a frame-to-mosaic image transformation mode, determining images which are not adjacent in time sequence but adjacent in space on a flight path according to the GPS (global positioning system) position information of the unmanned plane, optimizing the frame-to-mosaic transformation relation, determining image overlapping areas, thereby realizing image fusion and the panoramic image construction and realizing real-time effect of carrying out flying and stitching simultaneously; and in image transformation, based on adjacent frame information in a vision field and adjacent frame information in airspace, optimizing image transformation to obtain the accurate panoramic images. The stitching method has good real-time performance, is fast and accurate and meets the requirements of application occasions in multiple fields.
Owner:HUNAN AEROSPACE CONTROL TECH CO LTD

Image transformation and display for fluorescent and visible imaging

Improved fluoresced imaging (FI) and other sensor data imaging processes, devices, and systems are provided to enhance display of different secondary types of images and reflected light images together. Reflected light images are converted to a larger color space in a manner that preserves the color information of the reflected light image. FI or secondary images are transformed to a color range within the larger color space, but outside the color area of the reflected light images, allowing the FI or secondary images to be combined with them in a manner with improved distinguishability of color. Hardware designs are provide to enable real-time processing of image streams from medical scopes. The combined images are encoded for an electronic display capable of displaying the larger color space.
Owner:KARL STORZ IMAGING INC

System and method for using three dimensional infrared imaging to provide detailed anatomical structure maps

InactiveUS8463006B2Fast, precise change detection to aid prognosisRapid diagnosisData processing applicationsImage analysisAnatomical structuresAnatomical landmark
Calibrated infrared and range imaging sensors are used to produce a true-metric three-dimensional (3D) surface model of any body region within the fields of view of both sensors. Curvilinear surface features in both modalities are caused by internal and external anatomical elements. They are extracted to form 3D Feature Maps that are projected onto the skin surface. Skeletonized Feature Maps define subpixel intersections that serve as anatomical landmarks to aggregate multiple images for models of larger regions of the body, and to transform images into precise standard poses. Features are classified by origin, location, and characteristics to produce annotations that are recorded with the images and feature maps in reference image libraries. The system provides an enabling technology for searchable medical image libraries.
Owner:PROKOSKI FRANCINE J

Ml-based methods for pseudo-ct and hr mr image estimation

The present disclosure describes a computer-implemented method of transforming a low-resolution MR image to a high-resolution MR image using a deep CNN-based MRI SR network and a computer-implemented method of transforming an MR image to a pseudo-CT (sCT) image using a deep CNN-based sCT network. The present disclosure further describes a MR image-guided radiation treatment system that includes a computing device to implement the MRI SR and CT networks and to produce a radiation plan based in the resulting high resolution MR images and sCT images.
Owner:WASHINGTON UNIV IN SAINT LOUIS

Handheld imaging device employing planar light illumination and linear imaging with image-based velocity detection and aspect ratio compensation

A hand-held imaging device includes a plurality of linear imaging arrays, image formation optics, at least one illumination module and image processing circuitry that are embodied within a hand-holdable housing that is moved by hand movement past a target object to capture images of the target object. The plurality of linear imaging arrays and image formation optics provide field of views corresponding to the plurality of linear image arrays. The at least one illumination module produces planar light illumination that substantially overlaps the field of views corresponding to the plurality of linear imaging arrays. The image processing circuitry performs image-based velocity estimation operations, which analyzes pixel data values of a plurality of composite 2D images each derived from sequential image capture operations of a corresponding one linear imaging array to derive velocity data that represents an estimated velocity of the imaging device with respect to target object. The image processing circuitry produces a first image of portions of the target object, the first image having substantially constant aspect ratio, utilizing image transformation operations (or camera control operations) that are based upon the velocity data, to thereby compensate for aspect ratio distortions that would otherwise result from variations in velocity of the imaging device with respect to the target object(s). In addition, the image processing circuitry preferably carries out image-based horizontal jitter estimation and compensation operations, which estimate the horizontal jitter of the imaging device relative to the target object over the image capture operations from which the first image is derived, and transform the first image utilizing shift operations that are based upon such estimated horizontal jitter to produce a second image of portions of the target object which compensates for horizontal jitter distortion that would otherwise result therefrom. The first image, second image (or image derived from sharpening the first or second images) is preferably subject to image-based bar code detection operations and / or OCR operations carried out by the image processing circuitry, or output for display to a display device.
Owner:METROLOGIC INSTR

Fast license plate locating method

A rapid vehicle license plate locating method is provided, which uses top hat transformation and character texture characteristic, and is divided into background subtraction, vehicle license plate region crude location and precision location three steps, specifically comprises: (1) background subtraction, converting obtained color vehicle license plate image into gray image, using top hat transformation to inhibit large-size background object, highlighting vehicle license plate region; (2) crude location phase, calculating image edge map and proceeding binaryzation, morphological dilation and connected components analysis and other operation, obtaining reasonable size vehicle license plate candidate region set; (3) precision location phase, extracting candidate region texture characteristic, using support vector machine classifier to classify candidate vehicle license plate region, thus accurately locating vehicle license plate region. The invention uses the top hat transformation to filter vehicle license plate image, reduces large-size background interference, so that greatly enhances environment adaptation; meanwhile, from crude to fine location method is more efficient, and reduces greatly computing complexity.
Owner:BEIHANG UNIV

Image conversion and encoding techniques

A method of creating a depth map including the steps of assigning a depth to at least one pixel or portion of an image, determining relative location and image characteristics for each at least one pixel or portion of the image, utilising the depth(s), image characteristics and respective location to determine an algorithm to ascertain depth characteristics as a function relative location and image characteristics, utilising said algorithm to calculate a depth characteristic for each pixel or portion of the image, wherein the depth characteristics form a depth map for the image. In a second phase of processing the said depth maps form key frames for the generation of depth maps for non-key frames using relative location, image characteristics and distance to key frame(s).
Owner:DYNAMIC DIGITAL DEPTH RES

Device and method for monitoring vehicle surroundings

A vehicle surrounding monitoring device include at least one camera 2 installed in an own vehicle to image a video around the own vehicle, an obstacle sensor 3 for detecting an obstacle within an imaging range of the camera 2, a pixel synthesis unit 13 for receiving a camera image imaged by the camera 2 and converting the camera image into a view point converted image seen from a virtual view point above the own vehicle, and a display device 4 for displaying the view point conversion image converted by the pixel synthesis unit 13. Simultaneously when a warning is given by a warning sound upon entry of an obstacle within an obstacle detection range of the obstacle sensor 3, an image of the obstacle detection range is synthesized with an obstacle image imaged by the camera 2 and included in the view point converted image to be in contact therewith.
Owner:NISSAN MOTOR CO LTD

Converting images to moving picture format

InactiveUS20100118190A1Automatic exchangesAnimationComputer graphics (images)Moving image formats
A method for content delivery includes receiving a request for delivery of a still image to a client terminal. A promotional image is selected to be delivered to the client terminal together with the still image. The still image and the promotional image are processed together so as to create an image sequence containing the still image and the promotional image in a moving picture format. Responsively to the request for delivery of the still image, the image sequence is delivered over a network for display in the moving picture format by the client terminal.
Owner:FLASH NETWORKS

Color image three-dimensional reconstruction method based on three-dimensional matching

The invention relates to a color image three-dimensional reconstruction method based on three-dimensional matching, comprising the following steps of: (1) simultaneously and respectively taking an image from proper angles by using two color cameras; (2) respectively calibrating the internal parameter matrixes and the external parameter matrixes of the two cameras; (3) carrying out polar line correction and image transformation according to calibrated data; (4) working out matching cost for each pixel point in the two corrected images by applying a self-adaption weight window algorithm and acquiring an initial parallax image; (5) marking the reliability coefficient of the pixel initial matching result by adopting matching cost reliability detection and left and right consistency verification; (6) carrying out color segmentation on the images through a Mean-Shift algorithm; (7) carrying out global optimization by a selective confidence propagation algorithm on the basis of color segmentation and pixel reliability classification results to obtain a final parallax image; and (8) working out the three-dimensional coordinates of actual object points on the images according to the calibrated data and the matching relation, thereby reconstructing the three-dimensional point cloud of an object.
Owner:南通洁万家纺织有限公司 +1

Methods for patterning substrates having arbitrary and unexpected dimensional changes

Methods for patterning a plurality of electronic elements on a deformable substrate. The method uses an optical measurement device for optically measuring an existing geometric pattern on a substrate. The existing pattern is written on an nth layer of the substrate. A computing device, coupled to the optical measurement device, calculates a correction between the existing geometric pattern and an expected pattern for the nth layer. An image transformation component, coupled to the computing device, performs an image transformation on an electronic pattern to be used in an (n+1)th layer, based on the calculated correction, to generate a corrected electronic pattern. A writing component, coupled to the image transformation component, writes the corrected electronic pattern onto the (n+1)th layer using a programmable digital mask system. The writing component contains a radiation source which is coupled to an optical system for guiding radiation from the radiation source to the programmable digital mask and from there to the substrate.
Owner:SONY CORP +1

Method and apparatus for image analysis and processing by identification of characteristic lines and corresponding parameters

A method and apparatus is provided for analyzing and processing images by identification of characteristic lines and corresponding parameters. More particularly, the method and apparatus transforms an image into mathematical models derived from the characteristic lines and parameters, based on repetitive image patterns. The parameters include central lines, signatures, cross-sections, characteristic strips, margins, end areas, fitting transformations and fitting sequences. Each of the parameters associated with the identified characteristic lines are representable by mathematical models, which accurately approximate the geometric and brightness (or color) attributes of the respective characteristic lines.
Owner:VIMATIX TECH

Scanner with feedback control

The present invention relates to non-contact optical scanning of an object for generation of a three-dimensional surface model of the scanned object. In particular the invention relates to a scanner for obtaining the three-dimensional geometry of at least a part of the surface of an object, said scanner comprising: —at least one light source, preferably a laser light source with adjustable power, —projection means for directing light from the at least one light source to a moving spot on the surface of the object, —at least one image sensor adapted to record at least one image of at least a part of the surface, —detection means, other than the at least one image sensor, for monitoring at least a part of the light reflected from the surface, —regulation means for adjusting the intensity of the at least one light source based on the amount of light reflected from the surface, and—means for transforming the at least one image to a three-dimensional model of the surface.
Owner:3SHAPE AS

Dynamic finger detection mechanism for a fingerprint sensor

The present invention discloses an apparatus for determining the presence of a patterned object on the surface of a sensor. The apparatus comprises a sensor system coupled to a means for generating a control signal. The sensor system is configured to sense an image corresponding to the patterned object and to translate the image into image data. The means for generating a control signal generates a control signal if statistics of the image data exceed a pre-determined number of threshold levels. In a preferred embodiment, the patterned object is finger with a fingerprint on its surface and the sensor is fingerprint swipe sensor. Preferably, the threshold levels are software programmable.
Owner:APPLE INC

Vehicle control system for driver-based adjustments

A control system of a vehicle according to an exemplary embodiment of the present invention may include an input portion for inputting an order for generating an virtual avatar of a driver, an image detection portion that detects an outside image of the driver according to the order that is input by the input portion, an avatar generating portion that transforms the image of the real driver into the virtual avatar, and an integrated control portion that controls a driver seat, a steering device, a side view mirror, or a rear view mirror according to the shape of the virtual avatar.
Owner:HYUNDAI MOTOR CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products