Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30results about How to "Minimize and eliminate reliance" patented technology

Electric-drive motor vehicles, systems, and control logic for predictive charge planning and powertrain control

Presented are intelligent vehicle systems and control logic for predictive charge planning and powertrain control of electric-drive vehicles, methods for manufacturing / operating such systems, and electric-drive vehicles with smart charge planning and powertrain control capabilities. Systems and methods of AI-based predictive charge planning for smart electric vehicles use machine-learning (ML) driver models that draws on available traffic, location, and roadway map information to estimate vehicle speed and propulsion torque requirements to derive a total energy consumption for a given trip. Systems and methods of AI-based predictive powertrain control for smart hybrid vehicles use ML driver models with deep learning techniques to derive a drive cycle profile defined by a preview route with available traffic, geopositional, geospatial, and map data. ML-generated driver models are developed with collected data to replicate driver behavior and predict the drive cycle profile, including predicted vehicle speed, propulsion torque, and accelerator / brake pedal positions for a preview route.
Owner:GM GLOBAL TECH OPERATIONS LLC

Intelligent motor vehicles, charging systems, and control logic for governing vehicle grid integration operations

Presented are vehicle charging systems and control logic for provisioning vehicle grid integration (VGI) activities, methods for making / using such charging systems, and electric-drive vehicles with intelligent vehicle charging and VGI capabilities. A method of controlling charging operations of electric-drive vehicles includes a vehicle controller detecting if a vehicle is coupled to an electric vehicle supply equipment (EVSE), and determining if the vehicle's current mileage exceeds a calibrated mileage threshold. Responsive to the vehicle being connected to the EVSE and the vehicle's current mileage exceeding the calibrated mileage threshold, the controller determines the current remaining life of the vehicle's traction battery pack and the current time in service of the vehicle. The vehicle controller determines if the current remaining battery life exceeds a predicted remaining battery life corresponding to the current time in service. If so, the vehicle controller enables the traction battery pack to transmit electrical power to the EVSE.
Owner:GM GLOBAL TECH OPERATIONS LLC

Intelligent motor vehicles, systems, and control logic for real-time eco-routing and adaptive driving control

InactiveUS20200089241A1Significant computational savingReducing in-vehicle processing loadInstruments for road network navigationAutonomous decision making processControl engineeringMotorized vehicle
Presented are intelligent vehicle systems and control logic for predictive route planning and adaptive control, methods for manufacturing / operating such systems, and motor vehicles with real-time eco-routing and automated driving capabilities. A method for controlling operation of a vehicle includes determining vehicle origin and destination information, and identifying candidate routes for traversing from the origin to the destination. Road-level data, including speed and topology data, is received for each candidate route. Total energy uses are estimated for propelling the vehicle from the origin to the destination across each of the candidate routes. This estimating includes evaluating respective road-level data of each candidate route against a memory-stored table that correlates energy consumption to speed, turn angle, and / or gradient. A resident vehicle controller commands a resident vehicle subsystem to execute a control operation based on one or more of the estimated total energy uses corresponding to one or more of the candidate routes.
Owner:GM GLOBAL TECH OPERATIONS LLC

Intelligent motor vehicles, systems, and control logic for driver behavior coaching and on-demand mobile charging

ActiveUS20200117204A1Extend eDriving rangeImprove vehicle fuel economyHybrid vehiclesInstruments for road network navigationDriver/operatorVehicle miles of travel
Presented are intelligent vehicle systems and control logic for driver coaching and on-demand vehicle charging, methods for making / using such systems, and motor vehicles with real-time eco-routing and automated driving capabilities. A method for controlling operation of a vehicle includes: determining an origin and destination for the vehicle; conducting a geospatial query to identify a candidate route for traversing from the origin to the destination; determining, based on current electrical characteristics of the vehicle's battery pack, an estimated driving range for the vehicle; responsive to the estimated driving range being less than the candidate route's distance, evaluating energy characteristics of the candidate route to derive an estimated energy expenditure to reach the destination; using the estimated energy expenditure, generating an action plan with vehicle maneuvering and / or accessory usage actions that extend the estimated driving range; and commanding a resident vehicle subsystem to execute a control operation based on the action plan.
Owner:GM GLOBAL TECH OPERATIONS LLC

Engine disconnect clutches having torque converter feed-through activation for vehicle powertrains

ActiveUS10293674B1Minimize powertrain system complexityLow costHybrid vehiclesRotary clutchesImpellerBiological activation
Presented are engine disconnect clutches, methods for making / using such clutch devices, and vehicles with an engine that is coupled to / decoupled from a transmission and motor via a disconnect clutch. A vehicle includes a transmission with an input shaft connected with a transmission gearing arrangement, and an output shaft connecting the gearing arrangement with the vehicle's wheels. A torque converter pump housing drivingly connects to the vehicle's traction motor. A turbine is mounted inside the pump housing in fluid communication with an impeller. A turbine shaft connects the turbine to the transmission's input shaft. A clutch hub of a disconnect clutch drivingly connects to the vehicle's engine and selectively attaches to the pump housing. The disconnect clutch selectively connects the engine to the motor and transmission by drawing oil from the transmission's oil sump, through a turbine shaft channel and a pump housing port, and into a clutch hub cavity.
Owner:GM GLOBAL TECH OPERATIONS LLC

Multi-mode engine-disconnect clutch assemblies and control logic for hybrid electric vehicles

Presented are engine-disconnect clutches with attendant control logic, methods for making / operating such disconnect clutches, and hybrid electric vehicles (HEV) equipped with an engine that is coupled to / decoupled from a transmission and electric motor via a disconnect clutch. A representative method for controlling an HEV powertrain includes receiving an HEV powertrain operation command, then determining a clutch mode of a multi-mode clutch device to execute the HEV powertrain operation. This multi-mode clutch device is operable in: a lock-lock mode, in which the clutch device transmits torque to and from the engine; a free-free mode, in which the clutch device disconnects the engine's output member from the transmission's input member, preventing torque transmission to and from the engine; a lock-free mode, in which the clutch device transmits torque from but not to the engine; and, a free-lock mode, in which the clutch device transmits torque to but not from the engine.
Owner:GM GLOBAL TECH OPERATIONS LLC

Battery pack voltage-switching systems and control logic for multi-pack electric-drive motor vehicles

Presented are battery pack voltage-switching (“V-switch”) systems, methods for making / operating such systems, and multi-pack, electric-drive motor vehicles with battery pack V-switch capabilities. A method for controlling operation of a vehicle includes a vehicle controller receiving a voltage switch signal to change a voltage output of the vehicle's battery system. The vehicle controller determines if a speed of a traction motor is less than a calibrated base speed; if so, the controller transmits a pack isolation signal to a power inverter to electrically disconnect the traction battery packs from the traction motor. The vehicle controller determines if a bus current of a DC bus is less than a calibrated bus current threshold; if so, the controller transmits an open signal to open one or more pack contactor switches and a close signal to close one or more pack contactor switches thereby causing the vehicle battery system to output the second voltage.
Owner:GM GLOBAL TECH OPERATIONS LLC

Coordinated torque and speed control systems and logic for hybrid electric vehicles

Presented are model-based control systems for operating parallel hybrid powertrains, methods for making / using such systems, and motor vehicles with parallel hybrid powertrains and model-based torque and speed control capabilities. A method for controlling operation of a hybrid powertrain includes receiving a command signal for a hybrid powertrain operation associated with a driver input and a current operating mode of the powertrain. A desired output torque for executing the powertrain operation is then determined. The method determines if a speed differential between an engine speed of an engine and a torque converter output speed of a torque converter is less than a calibrated threshold; if so, the method responsively engages a clutch device to operatively connect the engine's output member to the transmission's input member. Engine torque is then coordinated with motor torque such that the sum of the engine and motor torques is approximately equal to the desired output torque.
Owner:GM GLOBAL TECH OPERATIONS LLC

Battery pack balancing systems and control logic for multi-pack electric-drive motor vehicles

Presented are traction battery pack balancing systems, methods for making / operating such systems, and multi-pack, electric-drive motor vehicles with battery pack balancing capabilities. A method for controlling operation of a motor vehicle includes a vehicle controller: receiving a key-off command signal to power off the motor vehicle; determining if a difference between corresponding electrical characteristics of first and second traction battery packs is greater than a calibrated characteristic differential threshold; determining if a difference between corresponding battery pack capacities of the first and second traction battery packs is greater than a calibrated capacity differential threshold; and, responsive to the characteristic difference not being greater than the calibrated characteristic differential threshold and the capacity difference being greater than the calibrated capacity differential threshold, transmitting a key-on command signal to power on the motor vehicle, and a pack balancing command signal to reduce the capacity difference to below the calibrated capacity differential threshold.
Owner:GM GLOBAL TECH OPERATIONS LLC

Electric-drive motor vehicles, systems, and control logic for predictive charge planning and powertrain control

Presented are intelligent vehicle systems and control logic for predictive charge planning and powertrain control of electric-drive vehicles, methods for manufacturing / operating such systems, and electric-drive vehicles with smart charge planning and powertrain control capabilities. Systems and methods of AI-based predictive charge planning for smart electric vehicles use machine-learning (ML) driver models that draws on available traffic, location, and roadway map information to estimate vehicle speed and propulsion torque requirements to derive a total energy consumption for a given trip. Systems and methods of AI-based predictive powertrain control for smart hybrid vehicles use ML driver models with deep learning techniques to derive a drive cycle profile defined by a preview route with available traffic, geopositional, geospatial, and map data. ML-generated driver models are developed with collected data to replicate driver behavior and predict the drive cycle profile, including predicted vehicle speed, propulsion torque, and accelerator / brake pedal positions for a preview route.
Owner:GM GLOBAL TECH OPERATIONS LLC

Intelligent motor vehicles, charging systems, and control logic for governing vehicle grid integration operations

Presented are vehicle charging systems and control logic for provisioning vehicle grid integration (VGI) activities, methods for making / using such charging systems, and electric-drive vehicles with intelligent vehicle charging and VGI capabilities. A method of controlling charging operations of electric-drive vehicles includes a vehicle controller detecting if a vehicle is coupled to an electric vehicle supply equipment (EVSE), and determining if the vehicle's current mileage exceeds a calibrated mileage threshold. Responsive to the vehicle being connected to the EVSE and the vehicle's current mileage exceeding the calibrated mileage threshold, the controller determines the current remaining life of the vehicle's traction battery pack and the current time in service of the vehicle. The vehicle controller determines if the current remaining battery life exceeds a predicted remaining battery life corresponding to the current time in service. If so, the vehicle controller enables the traction battery pack to transmit electrical power to the EVSE.
Owner:GM GLOBAL TECH OPERATIONS LLC

Middleware support for fault-tolerant execution in an adaptive platform for a vehicle

A method for controlling a vehicle includes: establishing, by a vehicle controller, a connection between a client and a plurality of servers, the plurality of servers includes a primary server and at least one replica server, the at least one replica server is a replica of the primary server; making, by the vehicle controller, a data request about a given service to the plurality of servers; in response to the data request, receiving reply data from the plurality of servers to the data request via a middleware; fusing, by the middleware, the reply data from the plurality of servers to generate a resulting data; receiving, by the vehicle controller, the resulting data; and controlling, by the client, the vehicle based on the resulting data.
Owner:GM GLOBAL TECH OPERATIONS LLC

Back-to-back selectable one-way clutches for engine disconnect devices of motor vehicle powertrains

Presented are dual-clutch engine disconnect devices, methods for making / using such disconnect devices, and motor vehicles equipped with such disconnect devices. An engine disconnect device for a vehicle includes a first one-way clutch (OWC) with concentric inner and outer races and torque elements interposed between and transferring torque across these races in a first direction. The first outer race rigidly attaches to a damper plate for common rotation therewith, and the first inner race rigidly attaches to a pump cover of a torque converter for common rotation therewith. A second OWC, which concentrically aligns within the first OWC, includes concentric inner and outer races with torque elements interposed between and transferring torque across these races in a second direction. The second outer race is splined to the first inner race for common rotation with the pump cover. The second inner race rigidly attaches to the damper plate for common rotation therewith.
Owner:GM GLOBAL TECH OPERATIONS LLC

Torque converter assemblies with integrated planetary-type torsional vibration dampers

Presented are torque converters (TC) with planetary-type vibration dampers, methods for making / using such TC assemblies, and vehicles equipped with such TC assemblies. A TC assembly includes a TC housing drivingly connected to a prime mover to receive torque therefrom, and a TC output member drivingly connected to a transmission to transfer torque thereto. Rotatably mounted within an internal fluid chamber of the TC housing are juxtaposed turbine and impeller blades. The impeller blades are rotatably mounted to the housing. A TC clutch is operable to lock the TC housing to the TC output member. A torsional vibration damper, which is disposed within the internal fluid chamber, includes a sun gear attached to the TC output member for unitary rotation, a ring gear attached to the TC clutch for unitary rotation, and a planet carrier intermeshed with the ring and sun gears and attached to the turbine blades for unitary rotation.
Owner:GM GLOBAL TECH OPERATIONS LLC

Mobile charging stations with fuel-cell generators for electric-drive vehicles

Presented are mobile charging stations for recharging electrified vehicles, methods for making / using such mobile charging stations, and parking facilities equipped with such mobile charging stations. A mobile charging station includes a frame with multiple drive wheels and a prime mover operable to drive the wheels to propel the charging station. A hydrogen storage container and fuel cell are mounted to the frame. The fuel cell oxidizes hydrogen received from the storage container to generate electrical current. An electrical coupling mechanism connects the fuel cell to a traction battery pack of an electric-drive vehicle. A resident or remote controller is programmed to receive charge requests to recharge vehicles, and responsively determines path plan data for the mobile charging station. The controller commands the prime mover to propel the mobile charging station from the charger's origin to a charger destination, and enables the fuel cell to transmit electrical current to the vehicle.
Owner:GM GLOBAL TECH OPERATIONS LLC

Multi-mode engine-disconnect clutch assemblies and control logic for hybrid electric vehicles

Presented are engine-disconnect clutches with attendant control logic, methods for making / operating such disconnect clutches, and hybrid electric vehicles (HEV) equipped with an engine that is coupled to / decoupled from a transmission and electric motor via a disconnect clutch. A representative method for controlling an HEV powertrain includes receiving an HEV powertrain operation command, then determining a clutch mode of a multi-mode clutch device to execute the HEV powertrain operation. This multi-mode clutch device is operable in: a lock-lock mode, in which the clutch device transmits torque to and from the engine; a free-free mode, in which the clutch device disconnects the engine's output member from the transmission's input member, preventing torque transmission to and from the engine; a lock-free mode, in which the clutch device transmits torque from but not to the engine; and, a free-lock mode, in which the clutch device transmits torque to but not from the engine.
Owner:GM GLOBAL TECH OPERATIONS LLC

Selectable one-way clutches with notch plate inserts for engine disconnect devices of motor vehicle powertrains

ActiveUS20200325970A1Mitigate rotational backlashMitigate resultant noiseHybrid vehiclesGearing controlEngineeringStructural engineering
Presented are clutch-type engine disconnect devices, methods for making / using such disconnect devices, and motor vehicles equipped with such disconnect devices. An engine disconnect device includes a notch plate, which has multiple notches and attaches to a torque converter, and a pocket plate, which has multiple pockets and attaches to an engine's crankshaft. A pawl is movably mounted within each notch; these pawls selectively engage the notches with the pockets. A notch plate insert is nested within each notch, supporting thereon one of the pawls. A selector plate interposed between the pocket and notch plates moves from a first position, to shift the pawls out of engagement with the pockets, and a second position, to move the notch plate inserts within the notches and allow the pawls to engage the notches with the pockets to thereby lock the notch plate to the pocket plate to rotate in unison with each other.
Owner:GM GLOBAL TECH OPERATIONS LLC

Intelligent motor vehicles, systems, and control logic for driver behavior coaching and on-demand mobile charging

Presented are intelligent vehicle systems and control logic for driver coaching and on-demand vehicle charging, methods for making / using such systems, and motor vehicles with real-time eco-routing and automated driving capabilities. A method for controlling operation of a vehicle includes: determining an origin and destination for the vehicle; conducting a geospatial query to identify a candidate route for traversing from the origin to the destination; determining, based on current electrical characteristics of the vehicle's battery pack, an estimated driving range for the vehicle; responsive to the estimated driving range being less than the candidate route's distance, evaluating energy characteristics of the candidate route to derive an estimated energy expenditure to reach the destination; using the estimated energy expenditure, generating an action plan with vehicle maneuvering and / or accessory usage actions that extend the estimated driving range; and commanding a resident vehicle subsystem to execute a control operation based on the action plan.
Owner:GM GLOBAL TECH OPERATIONS LLC

Torque converter assemblies with integrated planetary-type torsional vibration dampers

ActiveUS20210172505A1Minimize noise and vibrationMinimize and eliminate relianceFluid gearingsVehiclesImpellerVariator
Presented are torque converters (TC) with planetary-type vibration dampers, methods for making / using such TC assemblies, and vehicles equipped with such TC assemblies. A TC assembly includes a TC housing drivingly connected to a prime mover to receive torque therefrom, and a TC output member drivingly connected to a transmission to transfer torque thereto. Rotatably mounted within an internal fluid chamber of the TC housing are juxtaposed turbine and impeller blades. The impeller blades are rotatably mounted to the housing. A TC clutch is operable to lock the TC housing to the TC output member. A torsional vibration damper, which is disposed within the internal fluid chamber, includes a sun gear attached to the TC output member for unitary rotation, a ring gear attached to the TC clutch for unitary rotation, and a planet carrier intermeshed with the ring and sun gears and attached to the turbine blades for unitary rotation.
Owner:GM GLOBAL TECH OPERATIONS LLC

Mobile charging stations with fuel-cell generators for electric-drive vehicles

Presented are mobile charging stations for recharging electrified vehicles, methods for making / using such mobile charging stations, and parking facilities equipped with such mobile charging stations. A mobile charging station includes a frame with multiple drive wheels and a prime mover operable to drive the wheels to propel the charging station. A hydrogen storage container and fuel cell are mounted to the frame. The fuel cell oxidizes hydrogen received from the storage container to generate electrical current. An electrical coupling mechanism connects the fuel cell to a traction battery pack of an electric-drive vehicle. A resident or remote controller is programmed to receive charge requests to recharge vehicles, and responsively determines path plan data for the mobile charging station. The controller commands the prime mover to propel the mobile charging station from the charger's origin to a charger destination, and enables the fuel cell to transmit electrical current to the vehicle.
Owner:GM GLOBAL TECH OPERATIONS LLC

Wedge-type selectable one-way clutches for engine disconnect devices of motor vehicle powertrains

ActiveUS10760624B1Mitigate rotational backlash and resultant noiseMinimize packaging space requirementFluid gearingsActuatorsPowertrainElectrical and Electronics engineering
Presented are wedge-type engine disconnect devices, methods for making / using such disconnect devices, and motor vehicles equipped with such disconnect devices. An engine disconnect device includes an outer race that attaches to a torque converter's pump cover. The outer race's inner diameter (ID) surface has circumferentially spaced grooves. An inner race is concentrically aligned within the outer race and attaches to an engine's output shaft. The inner race's outer diameter (OD) surface has circumferentially spaced pockets. A wedge plate interposed between the inner and outer races has multiple circumferentially spaced ramps. Each ramp slidably mounts within one groove and one pocket. The wedge plate moves between an engaged position, whereat the ramps wedge between the ID and OD surfaces to thereby transfer torque between the inner and outer races, and a disengaged position, whereat the ramps unwedge to thereby free the inner race to rotate with respect to the outer race.
Owner:GM GLOBAL TECH OPERATIONS LLC

Back-to-back selectable one-way clutches for engine disconnect devices of motor vehicle powertrains

ActiveUS20200324755A1Mitigate rotational backlashMitigate resultant noiseHybrid vehiclesFluid couplingsDamperControl theory
Presented are dual-clutch engine disconnect devices, methods for making / using such disconnect devices, and motor vehicles equipped with such disconnect devices. An engine disconnect device for a vehicle includes a first one-way clutch (OWC) with concentric inner and outer races and torque elements interposed between and transferring torque across these races in a first direction. The first outer race rigidly attaches to a damper plate for common rotation therewith, and the first inner race rigidly attaches to a pump cover of a torque converter for common rotation therewith. A second OWC, which concentrically aligns within the first OWC, includes concentric inner and outer races with torque elements interposed between and transferring torque across these races in a second direction. The second outer race is splined to the first inner race for common rotation with the pump cover. The second inner race rigidly attaches to the damper plate for common rotation therewith.
Owner:GM GLOBAL TECH OPERATIONS LLC

Selectable one-way clutches with notch plate inserts for engine disconnect devices of motor vehicle powertrains

Presented are clutch-type engine disconnect devices, methods for making / using such disconnect devices, and motor vehicles equipped with such disconnect devices. An engine disconnect device includes a notch plate, which has multiple notches and attaches to a torque converter, and a pocket plate, which has multiple pockets and attaches to an engine's crankshaft. A pawl is movably mounted within each notch; these pawls selectively engage the notches with the pockets. A notch plate insert is nested within each notch, supporting thereon one of the pawls. A selector plate interposed between the pocket and notch plates moves from a first position, to shift the pawls out of engagement with the pockets, and a second position, to move the notch plate inserts within the notches and allow the pawls to engage the notches with the pockets to thereby lock the notch plate to the pocket plate to rotate in unison with each other.
Owner:GM GLOBAL TECH OPERATIONS LLC

Battery pack balancing systems and control logic for multi-pack electric-drive motor vehicles

Presented are traction battery pack balancing systems, methods for making / operating such systems, and multi-pack, electric-drive motor vehicles with battery pack balancing capabilities. A method for controlling operation of a motor vehicle includes a vehicle controller: receiving a key-off command signal to power off the motor vehicle; determining if a difference between corresponding electrical characteristics of first and second traction battery packs is greater than a calibrated characteristic differential threshold; determining if a difference between corresponding battery pack capacities of the first and second traction battery packs is greater than a calibrated capacity differential threshold; and, responsive to the characteristic difference not being greater than the calibrated characteristic differential threshold and the capacity difference being greater than the calibrated capacity differential threshold, transmitting a key-on command signal to power on the motor vehicle, and a pack balancing command signal to reduce the capacity difference to below the calibrated capacity differential threshold.
Owner:GM GLOBAL TECH OPERATIONS LLC

Torque converter assemblies with integrated planetary-type torsional vibration dampers

Presented are torque converters (TC) with planetary-type vibration dampers, methods for making / using such TC assemblies, and vehicles equipped with such TC assemblies. A TC assembly includes a TC housing drivingly connected to a prime mover to receive torque therefrom, and a TC output member drivingly connected to a transmission to transfer torque thereto. Rotatably mounted within an internal fluid chamber of the TC housing are juxtaposed turbine and impeller blades. The impeller blades are rotatably mounted to the housing. A TC clutch is operable to lock the TC housing to the TC output member. A torsional vibration damper, which is disposed within the internal fluid chamber, includes a sun gear attached to the TC output member for unitary rotation, a ring gear attached to the TC clutch for unitary rotation, and a planet carrier intermeshed with the ring and sun gears and attached to the turbine blades for unitary rotation.
Owner:GM GLOBAL TECH OPERATIONS LLC

Coordinated torque and speed control systems and logic for hybrid electric vehicles

Presented are model-based control systems for operating parallel hybrid powertrains, methods for making / using such systems, and motor vehicles with parallel hybrid powertrains and model-based torque and speed control capabilities. A method for controlling operation of a hybrid powertrain includes receiving a command signal for a hybrid powertrain operation associated with a driver input and a current operating mode of the powertrain. A desired output torque for executing the powertrain operation is then determined. The method determines if a speed differential between an engine speed of an engine and a torque converter output speed of a torque converter is less than a calibrated threshold; if so, the method responsively engages a clutch device to operatively connect the engine's output member to the transmission's input member. Engine torque is then coordinated with motor torque such that the sum of the engine and motor torques is approximately equal to the desired output torque.
Owner:GM GLOBAL TECH OPERATIONS LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products