Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

50results about "Antimagnetic alloy usage" patented technology

Magnetically insensitive, highly hard and constant-modulus alloy, and its production method, as well as hair spring, mechanical driving apparatus and watch and clock

[Task] A constant-modulus alloy, which has a low saturation magnetic flux density to provide weakly magnetic properties, a high Young's modulus, a low temperature coefficient of Young's modulus, and high hardness, is provided. A hairspring, a mechanical driving apparatus and a watch and clock, in which the alloy is used, are provided.[Means for Solution]The alloy consists essentially of, by atomic weight ratio, 20 to 40% Co and 7 to 22% Ni, with the total of Co and Ni being 42.0 to 49.5%, 5 to 13% Cr and 1 to 6% Mo, with the total of Cr and Mo being 13.5 to 16.0%, and with the balance being essentially Fe (with the proviso that Fe is present in an amount of 37% or more) and inevitable impurities. The alloy is heated to a temperature of 1100 degrees C. or higher and lower than the melting point, followed by cooling. The alloy is subsequently subjected to repeated wiredrawing and intermediate annealing at 800 to 950 degrees C., thereby forming a wire at a working ratio of 90% or more. The resultant wire has a fiber structure having a <111> fiber axis. The wire is subsequently cold rolled at a rolling reduction of 20% or more, thereby obtaining a sheet, followed by heating the sheet at a temperature of 580 to 700 degrees C. The obtained magnetically insensitive, highly hard, constant modulus alloy has a {110}<111> texture. 2500 to 3500 G of saturation flux density, (−5˜+5)×10−5 degrees C−1 of temperature coefficient of Young's modulus as measured at 0 to 40 degrees C., and 350 to 550 of Vickers hardness
Owner:RESEARCH INSTITUTE FOR ELECTROMAGNETIC MATERIALS +1

Method for manufacturing a balance spring for a timepiece movement

A method for manufacturing a balance spring for a balance, which includes creating a blank from an alloy containing: niobium: the remainder to 100 wt %, titanium: between 40 and 60 wt %, traces of elements selected from the group formed of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, between 0 and 1600 ppm by weight individually, and less than 0.3 wt % combined; β-quenching the blank, such that the titanium of the alloy is essentially in solid solution form with β-phase niobium, the α-phase titanium content being less than or equal to 5% by volume, at least one deformation step of the alloy alternated with at least one heat treatment step such that the niobium and titanium alloy obtained has an elastic limit higher than or equal to 600 MPa and a modulus of elasticity lower than or equal to 100 GPa, a winding step to form the balance spring being performed prior to the final heat treatment step, prior to the deformation step, a step of depositing, on the alloy blank, a surface layer of a ductile material such as copper, to facilitate the wire shaping process, the thickness of the deposited ductile material layer is chosen such that the ratio of the area of ductile material to the area of NbTi alloy for a given cross-section of wire is less than 1.
Owner:NIVAROX FAR

Component for a timepiece movement

A micromechanical component for a timepiece movement including a metal body formed using a single material. The single material is of high-interstitial austenitic steel type including at least one non-metal as the interstitial atom in a proportion between 0.15% and 1.2% with respect to total mass of the material.
Owner:NIVAROX FAR

Component for a timepiece movement

The invention relates to a pivot arbor (1) for a timepiece movement comprising at least one pivot (3) made of a first non-magnetic metal material (4) at one of the ends thereof in order to limit the sensitivity thereof to magnetic fields. At least the outer surface of said pivot (3) is coated with a layer (5) of a second material selected from the group comprising Ni and NiP, and preferably chemical NiP.The invention concerns the field of timepiece movements.
Owner:NIVAROX FAR

Component for a timepiece movement

InactiveUS20180024500A1Limited sensitivityHigh hardnessGearworksEscapementsEngineeringNon magnetic
The invention relates to a pivot arbor comprising a metal pivot (3) at each of its ends. The metal is a non-magnetic copper alloy in order to limit its sensitivity to magnetic fields, and at least the outer surface (5) of one of the two pivots (3) is deep-hardened to a predetermined depth with respect to the rest of the arbor to harden the pivot or pivots (3).The invention concerns the field of timepiece movements.
Owner:NIVAROX FAR

Component for a timepiece movement

ActiveUS20180024499A1Limited sensitivityHigh hardnessGearworksEscapementsEngineeringNon magnetic
The invention relates to a pivot arbor comprising a metal pivot (3) at each of its ends. The metal is a non-magnetic aluminium alloy in order to limit its sensitivity to magnetic fields, and at least the outer surface (5) of one of the two pivots (3) is deep-hardened to a predetermined depth with respect to the rest of the arbor to harden the pivot or pivots (3).
Owner:NIVAROX FAR
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products