Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

528results about "Anchoring installations" patented technology

Power line sentry charging

A rechargeable battery energized unmanned aerial vehicle having surveillance capability and an ability to clandestinely collect propulsion and other energy needs from a conveniently located and possibly enemy owned energy transmission line. Energy collection is by way of a parked vehicle engagement with the transmission line in a current flow dependent, magnetic field determined, rather than shunt, voltage dependent, conductor coupling. Surveillance during both a parked or docked condition and during aerial vehicle movement is contemplated.
Owner:US SEC THE AIR FORCE THE

Autonomous Environmental Control System and Method For Post-Capture and Pre-Launch Management of an Unmanned Air Vehicle

An embodiment of the invention is directed to a system for controlling and managing a small unmanned air vehicle (UAV) between capture and launch of the UAV. The system includes an enclosure that provides environmental protection and isolation for multiple small UAVs in assembled and / or partially disassembled states. Control and management of the UAVs includes reorientation of a captured UAV from a landing platform and secure hand-off to the enclosure, decontamination, de-fueling, ingress to the enclosure, downloading of mission payload, UAV disassembly, stowage, retrieval and reassembly of the UAV, mission uploading, egress of the UAV from the enclosure, fueling, engine testing and launch readiness. An exemplary system includes two or more robots controlled by a multiple robot controller for autonomously carrying out the functions described above. A modular, compact, portable and autonomous system of UAV control and management is described.
Owner:LOCKHEED MARTIN CORP

Robotically Assisted Launch/Capture Platform For An Unmanned Air Vehicle

An embodiment of the invention is directed to a platform for launching and / or capturing an unmanned air vehicle (UAV), particularly a small UAV. The launch / capture platform includes a frame, a floor attached to the frame that is capable of supporting the UAV, means for acquiring and tracking the UAV in flight, a connector and a connector controller, connecting the platform to an external support structure, providing a controllable, adaptive motion of the platform in response to approaching UAV position and attitude, means for launching the UAV from the platform and for capturing an in-flight UAV to the platform, and means for locking down the UAV between the capture and launch of the UAV. Another embodiment of the invention directed to a method for capturing a small, in-flight UAV involves providing a UAV capture platform, providing a UAV capturing means as an integrated component of the platform, providing means for determining in real-time the relative location of an engaging portion of the capturing means with respect to an approaching in-flight UAV, providing means for automatically maneuvering the engaging portion of the capturing means with respect to at least one of a position and an attitude of the approaching in-flight UAV, capturing the UAV, and securing the captured UAV to the capture platform.
Owner:LOCKHEED MARTIN CORP

Spacecraft docking mechanism

The present invention provides a docking mechanism that is capable of interfacing with Apogee Boost Motors (ABM) including Liquid Apogee Motors (LAM) of the satellite being captured to allow a servicing spacecraft to dock with a satellite that has no special docking features. The docking mechanism includes a compliant probe with spring-loaded fingers at its tip which is inserted into the LAM by the approach motion of the servicer spacecraft. When the probe tip has passed beyond the throat of the LAM the finger extend to trap the LAM on the probe thus achieving capture. The rigidization stage of docking is achieved by retracting the probe to pull the two spacecraft together. The docking mechanism includes abutment pads which interface with the launcher interface ring of the client spacecraft. With the preload applied by the probe retraction mechanism reacted through these pads, the docking mechanism can maintain a rigid docked interface under loads induced by thrusting maneuvers of the combined spacecraft or loads induced by on-orbit servicing operations.
Owner:MACDONALD DETTWILER & ASSOC INC

Robotically assisted launch/capture platform for an unmanned air vehicle

An embodiment of the invention is directed to a platform for launching and / or capturing an unmanned air vehicle (UAV), particularly a small UAV. The launch / capture platform includes a frame, a floor attached to the frame that is capable of supporting the UAV, means for acquiring and tracking the UAV in flight, a connector and a connector controller, connecting the platform to an external support structure, providing a controllable, adaptive motion of the platform in response to approaching UAV position and attitude, means for launching the UAV from the platform and for capturing an in-flight UAV to the platform, and means for locking down the UAV between the capture and launch of the UAV. Another embodiment of the invention directed to a method for capturing a small, in-flight UAV involves providing a UAV capture platform, providing a UAV capturing means as an integrated component of the platform, providing means for determining in real-time the relative location of an engaging portion of the capturing means with respect to an approaching in-flight UAV, providing means for automatically maneuvering the engaging portion of the capturing means with respect to at least one of a position and an attitude of the approaching in-flight UAV, capturing the UAV, and securing the captured UAV to the capture platform.
Owner:LOCKHEED MARTIN CORP

System for automatic takeoff and landing by interception of small uavs

ActiveUS20150266575A1Facilitate automatic capture and launchPrecise positioningArrester hooksArresting gearLifting capacityFlight vehicle
A system for facilitating automated landing and takeoff of an autonomous or pilot controlled hovering air vehicle with a cooperative underbody at a stationary or mobile landing place and an automated storage system used in conjunction with the landing and takeoff mechanism that stores and services a plurality of UAVs is described. The system is primarily characterized in that the landing mechanism is settable with 6 axes in roll, pitch, yaw, and x, y and z and becomes aligned with and intercepts the air vehicle in flight and decelerates the vehicle with respect to vehicle's inertial limits. The air vehicle and capture mechanism are provided with a transmitter and receiver to coordinate vehicle priority and distance and angles between landing mechanism and air vehicle. The landing and takeoff system has means of tracking the position and orientation of the UAV in real time. The landing mechanism will be substantially aligned to the base of the air vehicle. With small UAVs, their lifting capacity is limited. Reducing sensing and computation requirements by having the landing plate perform the precision adjustments for the landing operation allows for increased flight time and / or payload capacity.
Owner:BORKO BRANDON

Method and apparatus for retrieving a hovering aircraft

For retrieval of a hovering aircraft, a cable, bar, or similar fixture is suspended in an approximately horizontal orientation across the retrieval area between two well-separated supports. The aircraft slowly flies into this fixture, which then slides along the aircraft in a direction approximately parallel with the aircraft's thrust line. This leads to the aircraft becoming fastened to the fixture by an interceptor or aircraft capturer which in alternative embodiments are respectively on the aircraft or the fixture or both. Thrust is then reduced, and the aircraft comes to rest hanging from the fixture for subsequent removal. Retrieval is thus accomplished with simple and economical apparatus, light and unobtrusive elements on the aircraft, low risk of damage, and only moderate piloting accuracy.
Owner:AEROVEL CORP

Autonomous satellite docking system

This invention solves problems associated with prior-art soft-dock mechanisms by placing all active components of a soft-dock system on the chaser side of the mechanism, leaving the target side of the mechanism completely passive (i.e., requiring no power expenditure or self-actuated moving parts to operate). In particular, the active components are supported on the end of a flexible cable attached to the probe, or chaser, side of the device. These components act as a sort of spring-loaded “trap.” Once the end of the probe passes into a receptacle on the target side, the mechanism is triggered, engaging it in such a way that it can no longer be pulled out of the receptacle until it is reset. The soft-docking cable may be replaced with a rigid, semi-rigid or jointed post that is used to bring a capture mechanism into engagement with its corresponding receptacle or receiving structure. The magnetic end effector may also be implemented as an electro-magnet, which requires power to maintain the holding force, or a permanent magnet, which captures a target without power. The main target cone may be either a metallic cone: or a non-metallic cone constructed of fabric, plastic, or other flexible material.
Owner:MICHIGAN AEROSPACE

Method and system for predicting ship motion or the like to assist in helicopter landing

A method for a short-term prediction of future ship motion in open water to furnish visual cueing information that can be remotely presented to a pilot during an aircraft landing is described. Two sets of samples of the sea surface geometry along a radial azimuth line from a ship as a function of elevation of a sensor are first acquired. These are compensated to remove the components due to the ship's motion. Two wave traces are then separately derived in Cartesian format from the two sets of acquired samples. These wave traces are subjected to a Fast Fourier Transform to detect the amplitudes and phases of the individual wavelength components. The direction of the wavelength components is determined using a measure of their phase change in the scan direction during the time interval between the two scans together with their measured wavelength. The amplitude, direction and phase of each component is utilized together with the known motion characteristics of the moving ship in order to derive a short-term prediction of future ship motion in the time domain. A quiescent period of the ship motion is located by comparing the short-term prediction with the pre-defined operating limit criteria. Finally, a message signal is transmitted to the pilot of the aircraft indicating Time-to-Land and the duration of the quiescent period.
Owner:LOCKHEED MARTIN CORP

Unmanned air vehicle

An unmanned air vehicle for military, land security and the like operations includes a fuselage provided with foldable wings having leading edge flaps and trailing edge ailerons which are operable during ascent from launch to control the flight pattern with the wings folded, the wings being deployed into an open unfolded position when appropriate. The vehicle is contained within a pod from which it is launched and a landing deck is provided to decelerate and arrest the vehicle upon its return to land.
Owner:ISMAILOV ANVAR +1

Aircraft

ActiveUS8313057B2Improvement of landing reliability and useful loadLow costArrester hooksArresting gearJet aeroplaneAerodrome
The inventive aircraft with off-aerodrome landing consists of a body (1), a lifting wing (2) and the onboard part of a rope arresting and landing device comprising an arresting hook (5) which is provided with a grip (6). In the preferred embodiment, said aircraft is provided with a propeller (3) arranged in an annular empennage (4). Said arresting hook is arranged in such a way that it is rotatable around the transversal axis (8) of the aircraft situated in a longitudinal spacing of the aerodynamic mean chord of the wing. The aircraft leads for landing with the upwardly deployed arresting hook in such a way that the trajectory (12) of a top pickup point (6) is higher than the trajectory (13) of the highest top point of the aircraft and higher than a cable or rope (14) tensed on a landing area. The trajectory (13′) of the highest point of the aircraft located ahead of the arresting hook passes at a lower level than the cable (14). In said conditions, the grip of the arresting hook holds the cable which has a required effort for drawing it from a stationary arresting device. By overcoming said effort, the aircraft spends a flight kinetic energy and stops being suspended on the cable.
Owner:VASILIEVICH REDNIKOV VALERIY

Methods and apparatus for reconfigurable power exchange for multiple UAV types

A reconfigurable system capable of autonomously exchanging material from unmanned vehicles of various types and sizes. The system comprises an environmental enclosure, a landing area, a universal mechanical system to load and unload material from the unmanned vehicle, and a central processor that manages the aforementioned tasks. The landing area may comprise a one or more visible or non-visible markers / emitters capable of generating composite images to assist in landing the unmanned vehicle upon the reconfigurable, autonomous system.
Owner:ASYLON INC

Landing assist apparatus interface bulkhead and method of installation

An aircraft landing assist apparatus is designed to be retrofit to existing aircraft having internal constructions that have been modified to support the apparatus. The apparatus is designed so that on rough landings of the aircraft on a ship deck, the apparatus will collapse in a controlled manner to avoid any damage to ammunition and / or fuel storage areas of the aircraft.
Owner:THE BOEING CO

Unmanned aerial vehicle parking garage

ActiveCN108502201AControlled precision landingHigh speed chargingCharging stationsAnchoring installationsAssistive technologyUncrewed vehicle
The invention discloses an unmanned aerial vehicle parking garage and belongs to the technical field of unmanned aerial vehicle landing assistance. The unmanned aerial vehicle parking garage comprisesa controller, a parking apron and an automatic charging device controlled by the controller. The automatic charging device comprises a pair of clamping pressing components. Each clamping pressing component comprises multiple clamping claws for clamping and pressing transverse rods or supporting feet of an unmanned aerial vehicle undercarriage, a walking mechanism driving the clamping claws to move, an actuator driving the walking mechanism to move so as to move the clamping claws between clamping pressing charging positions and releasing positions and charging electrodes fixedly arranged on the clamping claws. By the adoption of the provided unmanned aerial vehicle parking garage, landing assistance is provided for an unmanned aerial vehicle, and meanwhile, the unmanned aerial vehicle canbe safely and automatically charged at a high speed in a wired mode.
Owner:SKYSYS INTELLIGENT TECH SUZHOU CO LTD

Release fitting for balloons

InactiveUS6234425B1SmallReduced and eliminated range safety costLaunch systemsCosmonautic partsBolt cutterEngineering
A release fitting for releasably holding at least one line to at least one item, the release fitting having a first body part, a second body part, and a third body part, the first and second body parts pivotably secured to the third body part, a bolt with a first bolt portion connected to a first portion of the first body part and a second bolt portion connected to a first portion of the second body part, at least one pin suitable for attaching thereto the at least one line, the first body part having a recess for releasably receiving an end of the pin, the bolt initially holding apart the first portion of the first body part and the first portion of the second body part to thereby maintain a second pin end in the recess, the third body part connected to the at least one item, bolt cutter apparatus for selectively cutting the bolt to release the at least one line from the pin.
Owner:WINZEN ENG

Autonomous resupply system and method

Some embodiments relate to a system and method of automatically transporting cargo from a loading station to an unloading station using a vehicle. Loading and unloading of cargo may be accomplished automatically without the need for human operators of either the loading station, the unloading station, or the vehicle. The unloading and loading station each comprise guide rails and a plurality of directional signal sources used by the vehicle to control its current position so that it may retrieve and deliver a target load. The vehicle comprises at least one sensor for detecting modulated directional signals and a controller to control the current position of the vehicle based on the received signals.
Owner:LOCKHEED MARTIN CORP

Ground handling system for an airship

A ground handling system for an airship which comprises a first track system to allow a plurality of docking carts to move from a hangar to a weathervane / launching / landing ring R. The docking carts are configured to complete a second track system. Carried by each of the docking carts is a mooring cart that carries a mooring structure. Upon the completion of the second track system by each of the docking carts, the mooring carts are able to move about the second track system. Thereby allowing the airship to be oriented in a desired manner to facilitate its launch or landing.
Owner:LOCKHEED MARTIN CORP

System, method and apparatus for widespread commercialization of hydrogen as a carbon-free alternative fuel source

A system for efficiently transporting hydrogen from where it can be economically made to where it is most needed using specially designed airships. Technologies such as geothermal, wind, solar, wave tidal or hydropower can be used to generate electricity in-situ or very near to the primary energy sources. This electricity can then be used to produce hydrogen directly from water through various methods known in the art. Hydrogen can be delivered from the place where it is produced to the place where it is needed using an airship in which the hydrogen gas can also be used for generating lift, providing propulsion energy and serving ancillary needs. In other embodiments of the invention, the airship of the present invention can be used to dramatically reduce the cost of transportation of freight, the cost of passenger transportation, and to save on the area required for landing at the points of loading / unloading and embarkation / debarkation. And in another embodiment, the airship of the present invention can be used for transporting water and food to areas where needed. A unique docking system can use a remotely piloted unmanned aircraft flown from the mother craft to carry a guide line into a receiving attachment point.
Owner:H2 CLIPPER INC

Crash Attenuation System for Aircraft

A crash attenuation system for an aircraft, the system having an airbag carried by the aircraft and inflatable generally adjacent an exterior of the aircraft. The airbag has at least one vent for releasing gas from the interior of the airbag. A first gas source is in fluid communication with the interior of the airbag for inflating the airbag with gas generated provided by the first gas source. A vent valve is provided for controlling a flow of gas through each vent, each vent valve being selectively configurable between an open state, in which gas can pass through the associated vent from the interior of the airbag, and a closed state, in which gas is retained within the interior of the airbag. A second gas source is provided for at least partially re-inflating the airbag after venting of gas through the at least one vent.
Owner:TEXTRON INNOVATIONS

System and methods for airborne launch and recovery of aircraft

InactiveUS7900866B2Recover and launch aircraft smoothlyClosuresLaunching/towing gearPresent methodAirplane
A system and methods for airborne launch and recovery of aircraft. In one embodiment the system comprises a flexible tether configured to be towed behind an airborne mother ship. A drag device is secured to a distal end of the flexible tether to generate drag and maintain tension in the flexible tether. A reel associated with the mother ship anchors a proximal portion of the flexible tether and selectively lets out and takes up the flexible tether to adjust a length of the flexible tether. A capture mechanism associated with the aircraft engages the flexible tether to enable the aircraft to translate along the flexible tether. In embodiments of the present methods, a flexible tether is deployed from an airborne mother ship. An aircraft translates forward and rearward along the flexible tether. Prior to launch, the weight of the aircraft is transferred from the flexible tether to the wings. During recovery, the weight of the aircraft is transferred from the wings to the flexible tether.
Owner:THE BOEING CO

Power and communication interface for vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVS)

A vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) system including: a rearward facing tang extending from a rear fuselage portion of a VTOL UAV; one or more metallic contacts disposed on an exterior surface of the tang; a UAV pod including a landing surface; and an opening disposed in the landing surface to receive the tang.
Owner:AEROVIRONMENT INC

Anchoring clamp

A clamp assembly for securing a flexible cable comprising an elongated body portion, a bore extending through the body portion, a clamping screw mounted in a sidewall of the body portion mounting a shoe at its inner end which snugly fits in a pocket, said shoe having an arcuate face to snugly embrace the cable and a means to finding a recess in the bore wall located opposite said show whereby rotation of screw in direction to advance the shoe inwardly presses the cable into the recess to firmly lock it in place.
Owner:STAFFORD JEFFREY B

Power and communication interface for vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVS)

A vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) system including: a rearward facing tang extending from a rear fuselage portion of a VTOL UAV; one or more metallic contacts disposed on an exterior surface of the tang; a UAV pod including a landing surface; and an opening disposed in the landing surface to receive the tang.
Owner:AEROVIRONMENT INC

Retraction system for mooring unmanned aerial vehicle and method for deploying and retracting mooring unmanned aerial vehicle with same

The invention relates to a retraction system for a mooring unmanned aerial vehicle. The retraction system comprises an retraction cabin for containing the mooring unmanned aerial vehicle, a cable for communication and power transmission and a cable take-up and pay-off device used for taking up and paying off the cable, wherein the retraction cabin comprises a lifting platform and a slidable cabin cover, the lifting platform is arranged inside the retraction cabin, the mooring unmanned aerial vehicle can stay on the lifting platform, the slidable cabin cover is arranged on the top of the retraction cabin and used for opening and closing the retraction cabin, and the cable take-up and pay-off device is arranged in the retraction system and connected with the mooring unmanned aerial vehicle through the cable. The invention further provides a method for deploying and retracting the mooring unmanned aerial vehicle through the retraction system. The method comprises the releasing step and the retracting step. The system and method can effectively solve the deploying and retracting problems of the mooring unmanned aerial vehicle.
Owner:任雪峰

Apparatus and method for lighter-than-air aircraft

An apparatus and associated method for launching and recovering a lighter-than-air aircraft are provided. The aircraft includes an envelope that is substantially filled before launch with a lift gas and a second gas. The lift gas and second gas are substantially separated in the envelope by a boundary layer of mixed gas, formed by the lift and second gases. The aircraft is supported by one or more masts as the lift gas is injected to achieve the required buoyancy for launch. The aircraft is then released and rises, for example, in an inclined orientation. As the aircraft climbs, the lift gas expands in the envelope, and the second gas is vented therefrom. During horizontal descent, air can be pumped into the envelope to maintain the envelope in a substantially filled configuration. The air and lift gas can be mixed to avoid sloshing and pooling.
Owner:THE BOEING CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products