Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

693 results about "Dct coefficient" patented technology

DCT/IDCT Concept. The DCT transform of an image brings out a set of numbers called coefficients. A coefficient’s usefulness is determined by its variance over a set of images as in video’s case.

Compressed image authentication and verification

A watermarking method involves mostly invisible artifacts and is sensitive to any modification of the picture at the level of precision rendered by the compressed version of the image. The image is compressed according to a known compression standard, such as the JPEG standard, and with a fixed quality setting. Using the JPEG standard, the original image is cut into blocks to which the Discrete Cosine Transform (DCT) is applied and the DCT coefficients quantized. The watermark according to the invention is applied to the quantized DCT coefficients. This is done using an encryption function, such as a secret key / public key algorithm. The JPEG compression is then completed using a lossless compression scheme, such as Huffman coding, to produce the compressed and watermarked image. Authentication of the compressed and watermarked image begins with a lossless decompression scheme to obtain the set of quantized DCT coefficients. The coefficients are authenticated, and the DCT output of each block is dequantized. If necessary, an inverse DCT is applied to each block to output the decompressed watermarked image.
Owner:IBM CORP

Efficient scaling of nonscalable MPEG-2 Video

To reduce bandwidth of non-scalable MPEG-2 coded video, certain non-zero AC DCT coefficients for the 8x8 blocks are removed from the MPEG-2 coded video. In one implementation, high-frequency AC DCT coefficients are removed at the end of the coefficient scan order. This method requires the least computation and is most desirable if the reduced-bandwidth video is to be spatially sub-sampled. In another implementation, the smallest-magnitude AC DCT coefficients are removed. This method may produce an undesirable increase in the frequency of occurrence of escape sequences in the (run, level) coding. This frequency can be reduced by retaining certain non-zero AC DCT coefficients that are not the largest magnitude coefficients, and by increasing a quantization scale to reduce the coefficient levels. The reduced-bandwidth video can be used for a variety of applications, such as browsing for search and play-list generation, bit stream scaling for splicing, and bit-rate adjustment for services with limited resources and for multiplexing of transport streams.
Owner:EMC IP HLDG CO LLC

3D Data Representation, Conveyance, and Use

3D video can be transmitted in a legacy 2D video format by conveying 3rd dimension parameters within a steganographic channel of the perceptual video signal, e.g., DCT coefficients, video samples (luminance, chrominance values), etc. The 3rd dimension parameters can be coded as depth values, disparity, displacement, difference, or parallax values, including depth that is converted into X-Y shifts for adjustment to motion vectors in coded video sequence. To limit the amount of information for the steganographic channel, the 3rd dimension information can be quantized relative to the depth from viewer and other prioritization parameters that limit the need for 3rd dimension information to only aspects of the scene that are deemed important to create a desired 3D effect.
Owner:DIGIMARC CORP

Video coding method

A video coding method enabling implementation of resolution scalability while improving the coding efficiency. In the method, a band dividing section 104 performs band division on a high-resolution original image to generate a middle-resolution image, horizontal component, vertical component and diagonal component. The horizontal component is subjected to the DCT processing in horizontal layer DCT section 124, and then subjected to the bit-plane VLC processing in horizontal layer bit-plane VLC section 126. The vertical component is subjected to the DCT processing in vertical layer DCT section 130, and then subjected to the bit-plane VLC processing in vertical layer bit-plane VLC section 132. The diagonal component is subjected to the DCT processing in diagonal layer DCT section 136, and then subjected to the bit-plane VLC processing in diagonal layer bit-plane VLC section 138. In scanning, a scanning order is determined in consideration of bias in the distribution of DCT coefficients for each band component.
Owner:PANASONIC CORP

Hybrid technique for reducing blocking and ringing artifacts in low-bit-rate coding

A power-scalable hybrid technique to reduce blocking and ringing artifacts in low bit-rate block-based video coding is employed in connection with a modified decoder structure. Fast inverse motion compensation is applied directly in the compressed domain, so that the transform (e.g., DCT) coefficients of the current frame can be reconstructed from those of the previous frame. The spatial characteristics of each block is calculated from the DCT coefficients, and each block is classified as either low-activity or high-activity. For each low-activity block, its DC coefficient value and the DC coefficient values of the surrounding eight neighbor blocks are exploited to predict low frequency AC coefficients which reflect the original coefficients before quantization in the encoding stage. The predicted AC coefficients are inserted into the low activity blocks where blocking artifacts are most noticeable. Subject to available resources, this may be followed by spatial domain post-processing, in which two kinds of low-pass filters are adaptively applied, on a block-by-block basis, according to the classification of the particular block. Strong low-pass filtering is applied in low-activity blocks where the blocking artifacts are most noticeable, whereas weak low-pass filtering is applied in high-activity blocks where ringing noise as well as blocking artifacts may exist. In low activity blocks, the blocking artifacts are reduced by one dimensional horizontal and vertical low-pass filters which are selectively applied in either the horizontal and / or vertical direction depending on the locations and absolute values of the predicted AC coefficients. In high activity blocks, de-blocking and de-ringing is conducted by 2- or 3-tap filters, applied horizontally and / or vertically, which makes the architecture simple.
Owner:SEIKO EPSON CORP

Efficient de-quantization in a digital video decoding process using a dynamic quantization matrix for parallel computations

An efficient digital video (DV) decoder process that utilizes a specially constructed quantization matrix allowing an inverse quantization subprocess to perform parallel computations, e.g., using SIMD processing, to efficiently produce a matrix of DCT coefficients. The present invention utilizes a first look-up table (for 8x8 DCT) which produces a 15-valued quantization scale based on class number information and a QNO number for an 8x8 data block ("data matrix") from an input encoded digital bit stream to be decoded. The 8x8 data block is produced from a deframing and variable length decoding subprocess. An individual 8-valued segment of the 15-value output array is multiplied by an individual 8-valued segment, e.g., "a row," of the 8x8 data matrix to produce an individual row of the 8x8 matrix of DCT coefficients ("DCT matrix"). The above eight multiplications can be performed in parallel using a SIMD architecture to simultaneously generate a row of eight DCT coefficients. In this way, eight passes through the 8x8 block are used to produce the entire 8x8 DCT matrix, in one embodiment consuming only 33 instructions per 8x8 block. After each pass, the 15-valued output array is shifted by one value position for proper alignment with its associated row of the data matrix. The DCT matrix is then processed by an inverse discrete cosine transform subprocess that generates decoded display data. A second lookup table can be used for 2x4x8 DCT processing.
Owner:SONY ELECTRONICS INC +1

System and associated method for transcoding discrete cosine transform coded signals

A method is provided for transcoding between video signals in two standards, DV and MPEG-2, each standard including discrete cosine transform (DCT) compressed signals. The each of the signals have macroblocks containing a plurality of DCT blocks. The DCT blocks are quantized according to respective quantization methods defined by the standards. The coefficients in each block are zigzag scanned, run-length coded and variable-length coded. The process variable-length decodes the coefficients and translates the quantized coefficients in the DV standard into quantized coefficients in the MPEG standard without fully dequantizing at least some of the DV coefficients and without performing an inverse DCT operation on any of the DCT coefficients. DV blocks that are encoded in a 248 format are translated into an 88 format before they are converted to MPEG-2 blocks. A method for transcoding from MPEG-2 to DV is also described. The MPEG-2 signals are intra-frame encoded, have a 4:2:2 chrominance format and an 88 frame-encoded block format. According to this method, converted 88 DV blocks that represent significant intra-field motion are converted from the 88 format to a 248 format. The method also controls which overflow coefficients in the DV signal are transcoded into corresponding coefficients in the MPEG-2 signal to control the data rate of the MPEG-2 signal.
Owner:PANASONIC OF NORTH AMERICA

Method of embedding digital watermark, method of extracting embedded digital watermark and apparatuses for the same

A color conversion module 42 carries out color conversion of original color image data Grgb from the RGB color system into the CMYK color system to obtain color-converted original color image data Gcmyk (step S104). A DCT module 44 applies DCT (discrete cosine transform) over the whole color-converted original color image data Gcmyk to generate DCT coefficients Dcmyk (step S106). An embedding module 46 embeds the watermark information s into the components C, M, Y, and K of the DCT coefficients Dcmyk (step S108). An IDCT module 48 applies IDCT (inverse discrete cosine transform) onto DCT coefficients D'cmyk with the watermark information s embedded therein to generate embedding-processed color image data G'cmyk (step S110). The color conversion module 42 carries out color conversion of the embedding-processed color image data G'cmyk from the CMYK color system into the RGB color system to obtain embedding-processed color image data G'rgb (step S112). This arrangement does not require any correction of the position or the shape of image blocks in the process of extracting the embedded watermark information.
Owner:KOWA CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products