Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method for expansion of stem cells

Inactive Publication Date: 2006-08-17
RIORDAN NEIL H
View PDF3 Cites 218 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0028] In another aspect of the invention, a method for the expansion or growth of stem cells is provided, by incubating at least a portion of a placenta in a growth medium to condition the medium, and contacting at least one stem cell with the growth medium hemochorial, epitheliochorial, or endotheliochorial. In a preferred embodiment the placenta is hemochorial. The placenta may be collected subsequent to vaginal delivery or collected pre-term by cesarean section, depending on biological properties desired. In a preferred embodiment the placenta is hemochorial. The stem cell can be, for example, a mesenchymal stem cell, or a fetal stem cell. The stem cells can be derived from an umbilical cord, such as, for example, from umbilical cord blood. The stem cells can be derived from an umbilical cord that expresses a CD34+ cell marker. The umbilical cord stem cells and said placenta can be derived, for example, from a mammal, such as a human. The growth medium can also contain, if desired, a growth factor, combinations of growth factors, or substantial nutrient content allowing for increased viability of the stem cells. The incubating step can occur, for example, at a temperature range of from about 32° C. to about 40° C. The placenta can be removed from the medium prior to the contacting step, if desired. The placenta can either be perfused with the medium or it may be cultured in the medium at conditions that allow for release of growth factors.
[0034] Another embodiment is the use of LPCM alone or in combination with other approaches expanding cells that have been generated for a specific phenotype, and are at risk of losing the phenotype that was artificially endowed upon them. Specifically, it is known that administration of a certain compounds to stem cells induces differentiation into certain lineage-specific progenitors. For example, addition of thrombopoietin alone or in combination with interleukin 11 to early hematopoietic stem cells will promote the preferential production of megakaryocytic progenitors. One embodiment of the current invention is the ability of LPCM, alone or in combination with other growth factors and / or culture conditions to maintain and expand the new phenotype of the differentiated progenitor cell without stimulation of terminal differentiation. For example, subsequent to increasing the numbers of megakaryocytic progenitors in a stem cell culture, LPCM may be added to maintain said progenitors and expand their numbers.
[0037] Another embodiment of the invention is a stimulator of proliferation of totipotent stem cells such as such as human embryonic stem cells characterized by expression of markers such as SSEA-4, GCTM-2 antigen, TRA 1-60, Cripto, gastrin-releasing peptide (GRP) receptor, podocalyxin-like protein (PODXL), or human telomerase reverse transcriptase (hTERT). The LPCM can be used as a stimulator of proliferation alone or as an additive to media known to be useful for culturing said cells. An example of such a tissue culture media is Dulbecco's modified Eagle's medium (DMEM). In an ideal embodiment LPCM is used in such a manner and under such conditions so as to alleviate the need for serum or feeder cells in the culture of human embryonic stem cells.
[0062] Within the embodiments of the invention is the use of LPCM, or extracts thereof, to enhance proliferation of stem cells within a living organism. Administration of such media can be performed systemically, or in a localized environment. Clinical situations where administration of such placentally conditioned media is desirable can include conditions where an increase in the number of stem cells is sought due to disease or senescence of endogenous stem cells. Specific aspects of this include conditions in which a higher number and / or more rapid recovery of stem cells is needed after a medical procedure. One such situation would be post bone marrow transplant where expansion of hematopoietic cells is desirable in order for the patient not to succumb to bacterial or viral infections. Specifically, LPCM may be used in conjunction with a growth factor that stimulates preferential differentiation of the bone marrow stem cell into the granulocytic and / or monocytic lineage such as G-CSM or GM-CSF. Such an expansion of granulocytic and monocytic precursors would be useful in enhancing immunological defenses subsequent to a bone marrow transplant. If clinically desirable the number of endogenous dendritic cells can also be expanded through administration of cytokines such as flt-3L in combination with LPCM. Accordingly, this invention provides methods and compositions that can be administered to a patient having undergone a bone marrow transplant that will enhance proliferation and bone marrow take.
[0076] In some embodiments of the present invention, a method for the expansion or growth of stem cells without substantially inducing differentiation is provided, by incubating at least a portion of a placenta in a growth medium to condition the medium, and contacting at least one stem cell with the growth medium. The placenta can be derived from a mammal. The placenta can be derived from a human. The placenta can be derived preterm. The placenta can be derived at term. The placenta can be perfused for a period of time with a cell culture media. The cell culture media can be supplemented, for example, with a single or a plurality of growth factors. The growth factors can be selected from, for example, a WNT signaling agonist, TGF-b, bFGF, IL-6, SCF, BMP-2, thrombopoietin, EPO, IGF-1, IL-11, IL-5, Flt-3 / Flk-2 ligand, fibronectin, LIF, HGF, NFG, angiopoietin-like 2 and 3, G-CSF, GM-CSF, Tpo, Shh, Wnt-3a, Kirre, or a mixture thereof. The media can be capable of maintaining viability of a substantial portion of the placental tissue during the perfusion process. The media can be selected, for example, from Roswell Park Memorial Institute (RPMI-1640), Dublecco's Modified Essential Media (DMEM), Eagle's Modified Essential Media (EMEM), Optimem, and Iscove's Media. The source of serum can be added to the media. The concentration of serum in the media can be approximately between 0.1% to 25%. The concentration of serum in the media can be approximately 10%. The serum can be selected from adult human serum, fetal human serum, fetal calf serum and umbilical cord blood serum. The contacting step can occur after the incubating step. The contacting step can occur simultaneously with the incubating step. The incubating step can occur from about 1 second to about 3 weeks. The incubating step can occur from about 24 hours to about 10 days. The contacting step can occur from about 1 second to about 3 weeks. The contacting step can occur from about 24 hours to about 10 days. The placenta can be, for example, a hemochorial, epitheliochorial, or endotheliochorial placenta. The perfusion can be accomplished, for example, through the use of a perfusion apparatus cannulated to blood vessels connected to the placental body. The perfusion apparatus can allow for control of intravasular pressure, oxygen content, carbon dioxide content, pH, and flow rate of the perfused media flowing through the placental blood vessels. The intravasular pressure of the perfusate can be maintained, for example, at 30-80 Hg. The intravasular pressure of the perfusate can be maintained at 60 Hg.
[0083] In an additional embodiment of the present invention, a method of culturing a placenta in its original 3-dimensional structure is provided, in such a manner as to reproduce the in vivo environment in which it resides in the pregnant woman, thus retaining capability of generation and secretion of growth factors and proteins that maintain the fetal regenerative capacity. The method involves acquiring a placenta under sterile conditions, cannulating blood vessels of the placenta in order to allow proper perfusion in circumstances similar to as if the placenta was performing its in vivo functions, perfusing the placenta with a nutrient mix in a buffer that would mimic physiological conditions, maintaining a temperature and physical environment similar to that found in the pregnant woman's body, and imitating conditions of flow, pH, oxygenation, and pressure similar to that found in the body. The perfusion of both the maternal and fetal circulatory components of the placenta can be performed. A nutrient mixture can be used that possesses similar nutrient requirements as the fetal and maternal circulation, respectively. A temperature of 37° C. can be maintained during the perfusion process. The pH can be monitored, for example, by the perfusion apparatus in a real-time basis, and adjusted using adequate quantities of acids, bases, or buffers. The oxygen content can be maintained similar to that found in the fetal and maternal circulatory contribution to the placenta. The oxygen content may be increased, for example, through the use of adding natural or artificial oxygen carriers to the perfusion solution. An oxygenator may be attached to the perfusion apparatus, in conjunction with, or separately, from an oxygen sensor, the combination being used to adjust in real-time oxygen content. The osmolality can be maintained, for example, through the use of known means such as addition of albumin or colloids to the perfusion solution.

Problems solved by technology

Unfortunately, many such methodologies involve the use of either murine feeder cells or other animal components, hence limiting the therapeutic potential of these cells.
The dose limiting variable in cancer chemotherapy is bone marrow toxicity.
Unfortunately, wide spread use of bone marrow induced tolerance is limited by the fact that bone marrow transplantation is associated with a high degree of morbidity and mortality during the myeloablative phase.
In addition, the possibility of graft versus host disease is another pitfall to the full-scale implementation.
Specifically, it is known that the process of autoimmunity requires the failure of several self-tolerance mechanisms before clinical presentation appears.
During autoimmunity the failure of all of these systems is usually a culmination of environmental and genetic factors occurring over a protracted period of time.
Induction of tolerance through hematopoietic stem cell transplantation, either from bone marrow or peripheral blood sources possesses the intrinsic danger of bone marrow failure during ablation of the recipient immune system.
Although non-myeloablative protocols are under development, even these carry the risk of immune suppression due to the lymphoablation.
Unfortunately, mesenchymal cell expansion is relatively slow and in many situations is not practical for widespread clinical use.
Data is still preliminary in this area, and the problem of embryonic stem cells inducing teratomas currently precludes their use for this indication.
Generation of such tailor-made immunological cells would greatly expand the clinical armamentarium of immunotherapy, however, this is limited by the currently lack of methodologies for expanding stem cells in a GMP / GTP compliant and feasible manner.
A limiting factor in presently used cellular therapies for myocardial dysfunction is the lack of ability to induce transdifferentiation of the stem cells into the desired cardiac tissue in a directed manner.
Additionally, methods do not exist for expanding sufficient numbers of semi-differentiated progenitor stem cells that possess a high proclivity for repairing the heart.
This drawback is in part due to lack of proper culture mediums for expansion of such unique cell populations.
Unfortunately, ethical issues associated with the use of fetal tissue, as well as inability to define the activities and functions of neurally injected stem cells hampers progress in the field.
Development of novel culture and expansion methodologies for stem cell applications is therefore an important area of issue.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

Incubation of Placenta in Growth Medium

[0130] A fresh human placenta obtained from vaginal delivery was placed in a sterile plastic container. The placenta was rinsed with an anticoagulant solution comprising phosphate buffered saline (Gibco-Invitrogen, Grand Island, N.Y.), containing a 1:1000 concentration of heparin (1% w / w) (American Pharmaceutical Partners, Schaumburg, Ill.).

[0131] The placenta was then covered with a DMEM media (Gibco) in a sterile container such that the entirety of the placenta was submerged in said media, and incubated at 37° C. in a humidified 5% CO2 incubator for 24 hours. At the end of the 24 hours, the live placenta conditioned medium (LPCM) was isolated from the container and sterile-filtered using a commercially available sterile 0.2 micron filter (VWR).

example 2

Isolation of CD 34+ cells from Human Umbilical Cord Blood and Subsequent Growth of Cells

[0132] Approximately 40 ml of cord blood was collected from a human umbilical cord via venipuncture and allowed to drop by gravitational force into a 250 ml sterile bag containing 20 ml citrate-phosphate-dextrose under sterile conditions. Collected blood cells were layered onto 50 ml conical tubes containing Ficoll-Hypaque (density 1.077 gram / ml; Sigma, St Louis, Mo.) and centrifuged at 400×g for 30 minutes. The mononuclear cells in the interface layer were then collected, washed three times in PBS, and re-suspended in PBS solution containing 0.5% serum albumin. CD34+ cells were purified from the mononuclear cell fraction by immuno-magnetic separation using the Magnetic Activated Cell Sorting (MACS) CD34+ Progenitor Cell Isolation Kit (Miltenyi-Biotec, Auburn, Calif.) according to manufacturer's recommendations. The purity of the CD34+ cells obtained ranged between 95% and 98%, based on Flow Cyt...

example 3

Expansion of Stem Cells

[0133] At the end of the 24 hour period, the LPCM from Example 1 was added to the wells of the sterile 24 well tissue culture plate in a volume of 0.25 ml. Umbilical cord mononuclear cells harvested as described in Example 1 were resuspended in DMEM in a volume of 0.25 ml and added to the wells containing LPCM. The final concentration of mononuclear cells was 10×106 cells per ml. The cultures were subsequently incubated for an additional seven days at 37° C. in a humidified 5% CO2 incubator. The number of CD 34+ cells and viability was then determined by flow cytometry as described in Example 2 both at the beginning of cell culture and subsequently after 7 days of culture. The number of viable CD34+ cells had increased 27.4 fold over the starting number of cells. In contrast, cells that were cultured with DMEM media alone in absence of LPCM had a decline in viable CD34+ cell numbers by approximately 7 fold.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to View More

Abstract

A method of increasing the growth of stem cells by mixing the stem cells with a growth medium that has been conditioned by an incubation with placental tissue. The method increases the expansion of the stem cell population.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority under 35 U.S.C. § 119 to U.S. Provisional Application No. 60 / 653,390, which was filed on Feb. 15, 2005, the disclosure of which is hereby incorporated by reference in its entirety.FIELD OF THE INVENTION [0002] This invention relates to the field of stem cell technology. More particularly, the invention describes a new method for increasing the growth of stem cells by mixing the stem cell culture with a medium that has been incubated with placental tissue. BACKGROUND OF THE INVENTION [0003] Stem cells have the ability to divide for indefinite periods in culture and to give rise to specialized cells. Typically, stem cells are divided into two main groups: adult stem cells and embryonic stem cells. Stem cells may also be generated through artificial means such as nuclear transfer, cytoplasmic transfer, cell fusion, parthenogenesis and reprogramming. Isolated stem cells can give rise to many types of differe...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61K35/14C12N5/08A61K35/28A61K35/44A61K35/50A61K35/51
CPCA61K8/982A61K35/50A61K35/51A61K35/44A61K35/28A61K38/1825C12N2502/02C12N5/0018A61Q19/08A61Q7/00A61K2300/00
Inventor RIORDAN, NEIL H.
Owner RIORDAN NEIL H
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products