Vehicle propulsion systems and methods of propulsion are disclosed, as well as embodiments of fans and airfoils, technology that in some applications of the invention can provide both lift and thrust, and propulsion via cross flow fan, manifold and a plurality of airfoils. In some embodiments the invention is directed to the production of lift and thrust, and propulsion generally, based from air produced by a cross flow fan in accordance with the invention disclosed herein. In still further embodiments, lift and thrust may yet be generated from air produced from the cross flow fan even when unpowered, such as in a loss of power or in a stall condition. Applications of the invention apply broadly to propulsion systems, generally; however, some preferred embodiments have particular application for vehicles characterized or used in application such as traditional private and commercial aircraft, ground effects vehicles, military applications, amphibious applications, aerospace, aeronautical, and non-traditional vehicles such as experimental air planes, space craft, hover craft, and the like. The invention in some embodiments comprises technologies addressing preferred air flow, lift, and thrust and the reduction of drag and circulation losses. The invention may be further applicable for incorporation in aircraft and other vehicles wherein the ability to maximize initial vertical lift and takeoff is important, such as in instant take-off and landing, as well as the abilities to hover, to control the flight and landing of aircraft, and control in power-loss scenarios, addressing the prevention of stalls and allowing for controlled descents under continued propulsion. In some embodiments, the invention is further applicable for aircraft, shuttles and other vehicles as a ram jet engine system as a further alternative propulsion technology, having no requirement for forward movement for propulsion upon take-off.