Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

199results about "X-ray tube anode cooling" patented technology

Structured targets for x-ray generation

We disclose targets for generating x-rays using electron beams, along with their method of fabrication. The targets comprise a number of microstructures fabricated from an x-ray target material arranged in close thermal contact with a substrate such that the heat is more efficiently drawn out of the x-ray target material. This in turn allows irradiation of the x-ray generating substance with higher electron density or higher energy electrons, which leads to greater x-ray brightness, without inducing damage or melting.The microstructures may comprise conventional x-ray target materials (such as tungsten) that are patterned at micron-scale dimensions on a thermally conducting substrate, such as diamond. The microstructures may have any number of geometric shapes to best generate x-rays of high brightness and efficiently disperse heat.In some embodiments, the target comprising microstructures may be incorporated into a rotating anode geometry, to enhance x-ray generation in such systems.
Owner:SIGRAY INC

Target for x-ray generation, x-ray generator, and method for producing target for x-ray generation

A target for X-ray generation has a substrate and a target portion. The substrate is comprised of diamond and has a first principal surface and a second principal surface opposed to each other. A bottomed hole is formed from the first principal surface side in the substrate. The target portion is comprised of a metal deposited from a bottom surface of the hole toward the first principal surface. An entire side surface of the target portion is in close contact with an inside surface of the hole.
Owner:HAMAMATSU PHOTONICS KK

Diamond anode

According to one aspect of the invention a robust anode structure and methods of making and using said structure to produce ionizing radiation are disclosed. An ionizing radiation producing layer is bonded to the target side of a highly conductive diamond substrate, by a metal carbide layer. The metal carbide layers improves the strength and durability of the bond, thus improving heat removal from the anode surface and reducing the risk of delaminating the ionizing radiation producing layer, thus reducing degradation and extending the anode's life. A smoothing dopant is alloyed into the radiation producing layer to facilitate keeping the layer surface smooth, thus improving the quality of the x-ray beam emitted from the anode. In an embodiment, the heat sink comprises a metal carbide skeleton cemented diamond material. In another embodiment, the heat sink is bonded to the diamond substrate structure in a high temperature reactive brazing process.
Owner:NOVA MEASURING INSTRUMENTS INC

Systems, methods and apparatus of a composite X-Ray target

Systems, methods and apparatus are provided through which in some embodiments an X-Ray energy target includes composite material that varies spatially in thermal properties, and in some embodiments, the composite material varies spatially in strength properties. In some embodiments, the spatial variance is a continuum and in other embodiments, the spatial variance is a plurality of distinct portions.
Owner:GENERAL ELECTRIC CO

X-ray generating device

An X-ray generating device includes an electron-beam generator, a target assembly group, and an electron-beam focusing unit. The electron-beam generator generates electron beams. The target assembly group includes a plurality of target assemblies that are arranged along a straight line in a direction in which X-rays are output; each of the target assemblies includes a target and a supporting member; the target generates X-rays from one of the electron beams generated by the electron-beam generator; and the supporting member supports the target by being disposed adjacent thereto. The electron-beam focusing unit focuses the electron beams onto the targets included in the target assembly group so that X-rays are generated in each of the target assemblies and output along the straight line after passing through the target assemblies.
Owner:CANON KK

Target pedestal assembly and method of preserving the target

An x-ray target pedestal assembly and a method of protecting the x-ray target from breaking down as a result of the extreme heat that is produced when an electron beam is aimed at the target to produce x-rays. The target is submerged in cooling fluid and is rotated by a constant flow of the cooling fluid over and around the target in order to dissipate heat. The fluid is guided by integrated flow diverters in the target cover. The target may also be protectively coated either in its entirety or along the electron beam path in order to further protect it from the heat of the electron beam impact or from breakdown as a result of attack of free radicals or other chemically reactive components of the cooling fluid which are produced in the extreme target environment.
Owner:TOMOTHERAPY INC

Target for X-ray generation, X-ray generator, and method for producing target for X-ray generation

A target for X-ray generation has a substrate and a target portion. The substrate is comprised of diamond and has a first principal surface and a second principal surface opposed to each other. A bottomed hole is formed from the first principal surface side in the substrate. The target portion is comprised of a metal deposited from a bottom surface of the hole toward the first principal surface. An entire side surface of the target portion is in close contact with an inside surface of the hole.
Owner:HAMAMATSU PHOTONICS KK

Method and apparatus for x-ray anode with increased coverage

The present invention is an x-ray tube anode with two targets oriented back-to-back. The targets have separate and opposing cathodes. The targets are a fixed distance apart and rotate together on the same bearing shaft. The cathodes are mounted at either end of the vacuum tube. The cathodes may operate simultaneously or independent of each other based on the CT application.
Owner:GE MEDICAL SYST GLOBAL TECH CO LLC

X-ray generating device

An X-ray generating device includes an electron-beam generator, a target assembly group, and an electron-beam focusing unit. The electron-beam generator generates electron beams. The target assembly group includes a plurality of target assemblies that are arranged along a straight line in a direction in which X-rays are output; each of the target assemblies includes a target and a supporting member; the target generates X-rays from one of the electron beams generated by the electron-beam generator; and the supporting member supports the target by being disposed adjacent thereto. The electron-beam focusing unit focuses the electron beams onto the targets included in the target assembly group so that X-rays are generated in each of the target assemblies and output along the straight line after passing through the target assemblies.
Owner:CANON KK

Method and apparatus for x-ray anode with increased coverage

The present invention is an x-ray tube anode with two targets oriented back-to-back. The targets have separate and opposing cathodes. The targets are a fixed distance apart and rotate together on the same bearing shaft. The cathodes are mounted at either end of the vacuum tube. The cathodes may operate simultaneously or independent of each other based on the CT application.
Owner:GE MEDICAL SYST GLOBAL TECH CO LLC

Diverging x-ray sources using linear accumulation

A compact source for high brightness x-ray generation is disclosed. The higher brightness is achieved through electron beam bombardment of multiple regions aligned with each other to achieve a linear accumulation of x-rays. This may be achieved through the use of x-ray targets that comprise microstructures of x-ray generating materials fabricated in close thermal contact with a substrate with high thermal conductivity. This allows heat to be more efficiently drawn out of the x-ray generating material, and allows bombardment of the x-ray generating material with higher electron density and / or higher energy electrons, leading to greater x-ray brightness. The orientation of the microstructures allows the use of a take-off angle at or near 0°, allowing the accumulation of x-rays from several microstructures to be aligned and be used to form a beam in the shape of an annular cone.
Owner:SIGRAY INC

X-ray tomosynthesis device

X-ray tomosynthesis device includes a target and a device configured for directing a particle beam of electrically charged particles onto the target which emits X-ray radiation for irradiating a sample to be examined when the electrically charged particles strike the target, in use. The target includes at least one support element on which a plurality of mutually spaced target elements are provided, and each mutually spaced target element only partially covers the at least one support element. A deflection device is provided, and the deflection device is configured for causing the particle beam to be deflected in order to strike the plurality of mutually spaced target elements, in use.
Owner:YXLON INT FEINFOCUS

High density low pressure plasma sprayed focal tracks for X-ray anodes

This invention involves the application of dense, metallurgically bonded deposits of tungsten and tungsten rhenium coatings onto preformed based x-ray anodes to be used as focal tracks. The coatings are applied by low pressure DC plasma spraying. The invention also includes heat treatments that further densify the as-applied coatings improving their suitability for use as focal tracks.
Owner:SURFACE MODIFICATION SYST

Miniature X-ray tube constructions

An X-ray tube includes an evacuated envelope; a cold cathode mounted at one end of the envelope and capable of field emission of electrons when subjected to a high electrostatic field; and an anode mounted at the opposite end of the envelope coaxial with and axially spaced from the cathode, and capable of emitting X-rays when struck by electrons emitted by the cathode. The envelope includes an end wall made of thermally-conductive and electrically-insulating material in contact with the anode and formed with a fluid cooling channel to remove the heat generated at the anode. In one described embodiment, the cathode includes a body of a getter material which is both electron emissive and gas absorptive. In other described embodiments, the cathode includes a carbon nanotube field-emission electron source.
Owner:MEDIRAD I R T

Heatpipe anode for x-ray generator

A rotating anode for x-ray generation uses a heat pipe principle with a heat pipe coolant located in a sealed chamber of a rotating portion of the anode. The rotating portion is positioned relative to a second portion so that relative rotation occurs between the two portions and so that a fluid path exists between the two portions through which an external cooling fluid may flow. The relative motion between the two portions provides a turbulent flow to the cooling fluid. The anode may also include cooling fins that extend into the sealed chamber. The sealed chamber may be under vacuum, and may be sealed by o-rings or by brazing. A closable fill port may be provided via which heat pipe coolant may be added. A balancing mass may be used to balance the anode in two dimensions.
Owner:BRUKER AXS

X-ray sources using linear accumulation

A compact source for high brightness x-ray generation is disclosed. The higher brightness is achieved through electron beam bombardment of multiple regions aligned with each other to achieve a linear accumulation of x-rays. This may be achieved by aligning discrete x-ray sub-sources, or through the use of x-ray targets that comprise microstructures of x-ray generating materials fabricated in close thermal contact with a substrate with high thermal conductivity. This allows heat to be more efficiently drawn out of the x-ray generating material, and in turn allows bombardment of the x-ray generating material with higher electron density and / or higher energy electrons, leading to greater x-ray brightness.The orientation of the microstructures allows the use of an on-axis collection angle, allowing the accumulation of x-rays from several microstructures to be aligned to appear to have a single origin, also known as “zero-angle” x-ray radiation.
Owner:SIGRAY INC

Systems, methods and apparatus of a composite X-Ray target

Systems, methods and apparatus are provided through which in some embodiments an X-Ray energy target includes composite material that varies spatially in thermal properties, and in some embodiments, the composite material varies spatially in strength properties. In some embodiments, the spatial variance is a continuum and in other embodiments, the spatial variance is a plurality of distinct portions.
Owner:GENERAL ELECTRIC CO

X-Ray Sources

The present invention is directed to an anode for an X-ray tube. The X-ray tube has an electron aperture through which electrons emitted from an electron source travel subject to substantially no electrical field and a target in a non-parallel relationship to the electron aperture and arranged to produce X-rays when electrons are incident upon a first side of the target, wherein the target further comprises a cooling channel located on a second side of the target. The cooling channel comprises a conduit having coolant contained therein. The coolant is at least one of water, oil, or refrigerant.
Owner:RAPISCAN SYST INC (US)

X-ray micro-target source

InactiveUS7050540B2Increase the amount of target material availableImprove efficiencyX-ray tube laminated targetsImaging devicesSoft x rayX-ray
X-ray generation apparatus including an elongated target body and a mount from which the body projects to a tip remote from the mount. The target body includes a substance that, on being irradiated by a beam of electrons of suitable energy directed onto the target body from laterally of the elongate target body, generates a source of x-ray radiation from a volume of interaction of the electron beam with the target body. The mount provides a heat sink for the target body.
Owner:XRT

Structured targets for x-ray generation

Disclosed are targets for generating x-rays using electron beams and their method of fabrication. They comprise a number of microstructures fabricated from an x-ray target material arranged in close thermal contact with a substrate such that the heat is more efficiently drawn out of the x-ray target material. This allows irradiation of the x-ray generating substance with higher electron density or higher energy electrons, leading to greater x-ray brightness, without inducing damage or melting. The microstructures may comprise conventional x-ray target materials (such as tungsten) that are patterned at micron-scale dimensions on a thermally conducting substrate, such as diamond. The microstructures may have any number of geometric shapes to best generate x-rays of high brightness and efficiently disperse heat. In some embodiments, the target comprising microstructures may be incorporated into a rotating anode geometry, to enhance x-ray generation in such systems.
Owner:SIGRAY INC

X-ray illumination system with multiple target microstructures

An x-ray illumination beam system includes an electron emitter and a target having one or more target microstructures. The one or more microstructures may be the same or different material, and may be embedded or placed atop a substrate formed of a heat-conducting material. The x-ray source may emit x-rays towards an optic system, which can include one or more optics that are matched to one or more target microstructures. The matching can be achieved by selecting optics with the geometric shape, size, and surface coating that collects as many x-rays as possible from the source and at an angle that satisfies the critical reflection angle of the x-ray energies of interest from the target. The x-ray illumination beam system allows for an x-ray source that generates x-rays having different spectra and can be used in a variety of applications.
Owner:SIGRAY INC

Supply of a liquid-metal target in x-ray generation

Closed-loop circulation for providing liquid metal to an interaction region at which an electron beam is to impact upon the liquid metal to produce X-rays is presented. In a method according to the invention, the pressure of the liquid metal is raised to at least 10 bar using a high-pressure pump. The pressurized liquid metal is then conducted to a nozzle and ejected into a vacuum chamber in the form of a spatially continuous jet. After passage through the vacuum chamber, the liquid metal is collected in a collection reservoir, and the pressure of the liquid metal is raised to an inlet pressure, e.g. using a primer pump, suitable for the inlet of the high-pressure pump. The invention also relates to a corresponding circulation system and an X-ray source provided with such circulation system.
Owner:EXCILLUM

Tungsten composite x-ray target assembly for radiation therapy

An x-ray target assembly including a housing having a recess, a cooling fluid contained within the recess and an x-ray target attached to the housing, wherein the x-ray target does not directly contact the cooling fluid.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Transmissive target, X-ray generating tube including transmissive target, X-ray generating apparatus, and radiography system

A transmissive target includes a target layer configured to include target metal and generate X-ray when receiving electrons and a substrate configured to support the target layer and include carbon as a main component. A carbide region including carbide of the target metal and a non-carbide region including the target metal are disposed in a mixed manner on a boundary surface between the substrate and the target layer on a target layer side.
Owner:CANON KK

Apparatus for providing shielding in a multispot x-ray source and method of making same

A modular x-ray source for an imaging system includes a structure forming a cavity and having a first wall and a second wall, at least one target positioned on the first wall within the cavity and configured to receive a first electron beam at a first spot position and a second electron beam at a second spot position, and a shielding material positioned on the second wall.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products