Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

787results about "Vehicle shock testing" patented technology

Collision accident simulator and collision accident simulation method

A collision accident simulator is composed of a vehicle for driving on a predetermined drive road and a collision object for moving in an intersectional direction for a driving direction of the vehicle and colliding with the vehicle. A collision accident simulation method for simulating a simulation collision accident is comprised of steps of riding an experience person for experiencing the simulation collision accident on any of the vehicle and the collision object and making the collision object collide with the vehicle, wherein the vehicle drives on the predetermined drive road.
Owner:TN

Force element for vehicle impact crash simulator

Embodiments of a crash simulator sled assembly are disclosed. The crash simulator sled assembly can include a sled, an element movable relative to the sled, and a force element, such as a damper assembly or actuator assembly, coupled to the element. A second sled can also be connected to the element. The damper assembly can control relative movement of the element relative to the sled, while the actuator can develop force to replace force attributable to mass. This provides advantages for more efficient and effective test crash simulation and research.
Owner:MTS SYSTEMS CORPORATION

Apparatus and method for vehicle rollover crash testing

An apparatus 10 for measuring and / or analyzing the rollover characteristics of a vehicle 12. Apparatus 10 includes a controller 14, a selectively movable test fixture assembly 16, a truck or towing vehicle 18 which is coupled to trailer assembly 16 and which selectively tows or drives assembly 16, several cameras 22, 24, 26 and 28, and a user interface 30. Vehicle 12 is attached to test fixture 16, and user interface 30 is used to activate motor assembly 36 which selectively rotates vehicle 12 to a desired roll angle 90 relative to the ground surface 43. Once vehicle 12 is correctly positioned, an operator drives truck 18 at a predetermined and desired speed. Controller 14 generates release signals to exploding bolts 86, 88, which simultaneously explode, thereby releasing vehicle 12 from frame 32. In this manner, apparatus 10 allows the drop height and the translational and vertical velocity of a vehicle to be selectively controlled, adjusted and repeated from test to test, and provides controllable and predictable roof-to-ground impacts.
Owner:EXPONENT

Laser positioning device

The invention provides a laser positioning device. The laser positioning device comprises a horizontal support frame, a sliding mechanism, a vertical support, a laser instrument mounting plate, a displacement measuring device and a laser instrument, wherein the horizontal support frame comprises two horizontal and parallel cross beams and a horizontal connecting beam for connecting the two cross beams; the sliding mechanism is limited on the connecting beam in a clamping mode and can move in the direction of the connecting beam; the vertical support is fixed on the sliding mechanism and extends upwards; the laser instrument mounting plate is limited to the vertical support in the clamping mode and can move up and down along the vertical support; the laser instrument is mounted on the laser instrument mounting plate; the displacement measuring device comprises a magnetic railing ruler, a magnetic sensor and a data display screen, the magnetic railing ruler is arranged on the side wall of one side of the front side and the rear side of the connecting beam, the magnetic sensor is fixed on the sliding mechanism and can move along with the sliding mechanism, the magnetic sensor is in contact with the magnetic railing ruler, the data display screen is electrically connected with the magnetic sensor, and the magnetic sensor is used for recording the displacement along the magnetic railing ruler and transmitting the displacement to the data display screen for displaying.
Owner:ZHEJIANG GEELY AUTOMOBILE RES INST CO LTD +1

Side impact dynamic intrusion simulator

A side impact simulator includes a primary sled connected to an actuator. A platform for supporting a vehicle seat and crash test dummy is slidably supported on the primary sled. A support is mounted to the platform, with a plurality of thrust rods slidably mounted therein. The primary sled includes a strike plate for striking an end of the thrust rods.
Owner:TOYODA GOSEI CO LTD

Passive structural assessment and monitoring system and associated method

A system and method for assessing and monitoring a structure are provided. The system includes at least one non-destructive inspection sensor carried by the structure and configured for acquiring data in response to ambient events associated with the structure. The system also includes a data acquisition system configured to communicate with the non-destructive inspection sensor and provide information indicative of a defect in the structure based on the data acquired by the non-destructive inspection sensor in response to the ambient events.
Owner:THE BOEING CO

Measurement system for ball joint of crash test dummy

A measurement system is provided for a ball joint of a crash test dummy. The measurement system includes a light source operatively supported by a movable ball of the ball joint and a position sensitive detector operatively supported by a fixed member of the ball joint. The measurement system also includes a controller electrically connected to the light source to provide power to the light source for emitting light and electrically connected to the position sensitive detector that receives the emitted light to measure at least two angles between the ball and the fixed member.
Owner:HUMANETICS INNOVATIVE SOLUTIONS

Vehicle-collision simulation testing apparatus

In a vehicle-collision simulation testing apparatus, to make it possible to downsize the apparatus with lightweight. A sled 11 is supported in a movable manner in a back-and-forth direction, a yawing sled 14 is arranged on the sled 11 in a horizontally rotatable manner with a front portion supported by a rotation shaft, on which a product under test can be mounted, an eccentric mass 17 is arranged on a side of a rotation shaft on the yawing sled 14, and a launching device 18 that applies a backward acceleration on a front side of the sled 11.
Owner:MITSUBISHI HEAVY IND MACHINERY SYST LTD

Vehicle Rollover Test Fixture

A test fixture for rollover crash testing of a test vehicle onto a moving surface employs a cradle to support and rotate the test vehicle. A vertical support structure to positions and releasably holds the cradle. A moving sled having a contact surface is carried by a guide extending beneath the structure and the cradle fixture. The cradle is rotated and released from the structure responsive to a sensor for contact within a drop impact zone on the contact surface of the moving sled. Vertical motion of the cradle is then arrested to prevent further damage to the test vehicle or the test structure.
Owner:SAFETY TESTING INT

Vehicle impact testing device

A vehicle impact testing device is provided with a towing device for running a test car along a running road surface to collide with a barrier. The towing device is movably suspended from a pair of guide rails received in a recess formed below the running road surface. The towing device is disposed between the guide rails, thereby making effective use of the space between the guide rails. Further, the towing device is disposed at a position below the running road surface, so that it does not interfere with the running of the test car.
Owner:HONDA MOTOR CO LTD

System for investigating collisions between test body and physical structure

A device for investigating a collision between a test body and a physical structure, wherein the device comprises a mounting unit for mounting the test body, an electric drive unit adapted for mechanically driving the mounting unit and the test body mounted thereon, and a control unit adapted for controlling the electric drive unit to accelerate the test body mounted on the mounting unit and for controlling release of the test body from the mounting unit to direct the accelerated test body towards the physical structure for collision, wherein the device is adapted so that the mounting unit and the test body mounted thereon are mechanically driven exclusively by the electric drive unit.
Owner:HUMANETICS INNOVATIVE SOLUTIONS

Safety test carrier controlled by external guidance system

The disclosure relates to a carrier for automotive safety testing wherein the movement of the carrier is controlled by an external guidance system, so that the carrier follows a determined route during the automotive safety testing. The actual position of the carrier is typically determined by a GPS system, while the desired position and velocity of the carrier are provided by a wireless transmitter, typically a W-LAN router receiving data from a PC or similar external source.
Owner:DSD STEFFAN DATENTECHN GES M B H

Measurement system for crash test dummy

A measurement system is provided for a ball joint of a crash test dummy. The measurement system includes a light source operatively supported by a movable ball of the ball joint and a position sensitive detector operatively supported by a fixed member of the ball joint. The measurement system also includes a controller electrically connected to the light source to provide power to the light source for emitting light and electrically connected to the position sensitive detector that receives the emitted light to measure at least two angles between the ball and the fixed member.
Owner:HUMANETICS INNOVATIVE SOLUTIONS

Vehicle rollover test fixture

A test fixture for rollover crash testing of a test vehicle onto a moving surface employs a cradle to support and rotate the test vehicle. A vertical support structure to positions and releasably holds the cradle. A moving sled having a contact surface is carried by a guide extending beneath the structure and the cradle fixture. The cradle is rotated and released from the structure responsive to a sensor for contact within a drop impact zone on the contact surface of the moving sled. Vertical motion of the cradle is then arrested to prevent further damage to the test vehicle or the test structure.
Owner:SAFETY TESTING INT

Flexible printed circuit cabling system for crash test dummy

ActiveUS20050126258A1Less likely to degrade biofidelityImproves biofidelityUsing electrical meansAcceleration measurementElectricityCrash test
A flexible printed circuit cabling system for a crash test dummy includes at least one centralized data-receiving unit. The flexible printed circuit cabling system also includes a plurality of sensors arranged remotely from the at least one centralized data receiving unit to generate electrical signals of data pertaining to a vehicular collision. The flexible printed circuit cabling system further includes a plurality of flexible printed circuit cables electrically interconnecting the sensors and the at least one centralized data receiving unit to transmit the electrical signals from the sensors to the at least one centralized data receiving unit.
Owner:HUMANETICS INNOVATIVE SOLUTIONS

Rollover Component Test Fixture And Methodology

The invention is an apparatus for simulating attributes of a vehicle during a certain inertial event. The apparatus comprises a rigid shell, an occupant compartment surrounded by the rigid shell, and a carriage supporting the occupant compartment and the rigid shell. The test apparatus transforms the vehicle into a system of reusable components. The rigid body shell eliminates damage to body components by protecting the occupant compartment. The invention also provides a method of simulating a tripped rollover event of a vehicle with the test apparatus and a cart.
Owner:FORD GLOBAL TECH LLC

Device for simulating a side collision of a motor vehicle

A device for simulating a collision of a motor vehicle by a laterally hitting impactor. The device comprises a seat carriage (3) which can be displaced in the transversal direction of the vehicle and on which a seat (5) is mounted, a lateral part carriage (10) on which a lateral part (13) of a motor vehicle body is mounted, and the impactor (20) that acts upon the lateral part (13) and is provided with an acceleration mechanism (21). The seat carriage (3) and the lateral part carriage (10) can be displaced independently of each other. In order to create a testing device which dispenses with the need for expensive and time-consuming preliminary tests to determine the settings for the tests, the impactor (20) is equipped with an acceleration mechanism (21) which can perform both positively and negatively accelerated movements in a controlled manner while an additional impactor (30) is provided that acts upon the seat carriage (3). In addition, further controls (15, 37) are provided for influencing the movement of the seat carriage (3).
Owner:MAGNA STEYR FAHRZEUGTECHN

Vehicle impact testing device

A vehicle impact testing device (10, 100, 500) is provided with a towing device (16, 116, 516) for running a test car (11) along a running road surface (12, 112, 521) to collide with a barrier (13, 113, 513). The towing device is movably suspended from a pair of guide rails (26, 126, 514) received in a recess (15, 115, 523) formed below the running road surface. The towing device is disposed between the guide rails, thereby making effective use of the space between the guide rails. Further, the towing device is disposed at a position below the running road surface, so that it does not interfere with the running of the test car.
Owner:HONDA MOTOR CO LTD

Method and apparatus for recording changes associated with acceleration of a structure

The present invention is directed to recording changes associated with the acceleration of a structure. An exemplary embodiment includes an accelerometer array having at least one silicon beam type accelerometer, a nonvolatile memory, a clock timer, a programmable control unit operatively coupled to the accelerometer array, at least one non-volatile memory, and clock timer. The accelerometer array, the at least one non-volatile memory, the clock timer and the programmable control unit can be formed on a common semiconductor substrate (e.g., integrated), with the accelerometer array disposed in a central region.
Owner:LOCKHEED MARTIN CORP

Object testing method, apparatus and system

InactiveCN107004039AHigh precisionImprove the efficiency of obtaining actual parametersGeometric CADAutonomous decision making processTest objectComputer science
The invention provides an object testing method, apparatus and system, the method comprising: obtaining a plan parameter corresponding to an object to be tested, obtaining an actual parameter corresponding to the object to be tested through a simulation platform, and determining a test result corresponding to the object to be tested according to the plan parameter and the actual parameter. The object testing method, apparatus and system are used to improve the accuracy of object testing.
Owner:SZ DJI TECH CO LTD

Vehicle crash simulation test apparatus

The invention provides a vehicle crash simulation test apparatus which enables reproducibility to be improved. In the vehicle crash simulation test apparatus, a sliding vehicle (15) that allows a to-be-test body (16) to be carried is supported to freely move back and forth along a horizontal direction, and a pedal (22) is supported by the front portion of the sliding vehicle (15) to freely rotate. In addition, acceleration can be applied to the pedal (22) by an emission device (23) serving as an acceleration device. The components of the pedal (22) and the components of the emission device (23) are configured in a way that the central position on the left and right directions of the sliding vehicle (15) is arranged to be a gravity position.
Owner:MITSUBISHI HEAVY IND MACHINERY SYST LTD

Method and apparatus for simulating head impacts for helmet testing

An apparatus is disclosed that includes a frame, an impact delivery unit for delivering an impact force and at least one head form. The head form is adapted to be mounted to the frame such that the impact delivery unit can deliver an impact force to a designated location on the head form. The head form is configured to have a helmet installed thereon. The head form is selectively rotatable about each of a plurality of different axes of rotation, wherein movement of the head form is constrained to be able to move only in rotation and in rotation about only one axis of rotation of the plurality of axes at any time. A measuring system provides an indicator of the rotational acceleration of the head form when rotated about each of the plurality of axes. Also disclosed are methods for comparing the degree of protection afforded by first and second helmets.
Owner:KIS JR MIHALY +3

Fluid solid interaction included in impact simulation of fuel delivery module

A method is provided for simulating a vehicle crash on a fuel delivery module of a vehicle. The fuel delivery module (11) has a flange (10) constructed and arranged to be coupled to a fuel tank, a fuel pump (12) for delivering fuel from the tank and through the flange, a reservoir (18) housing the fuel pump, and strut rods (14). Each strut rod has an end coupled to the reservoir or fuel pump and another end coupled to the flange at an interface. The method models a fuel tank associated with the fuel delivery module as a rigid or elastic shell. A solid model of the fuel delivery module is created. The solid model is meshed to create a finite element model. Fluid in the fuel tank is modeled with Lagrangian or arbitrary Lagrangian Eulerian finite elements, or smoothed particle hydrodynamics particles. Solid fluid interactions are added to the meshed solid model. A vehicle crash simulation is run on the solid model together with the fluid interactions to determine the effect of the fluid interactions on the interface of each strut rod with the flange and to determine any effect on the flange.
Owner:CONTINENTAL AUTOMOTIVE SYST INC

Impact Deflection, Absorption and Sensing Device and System

The present invention is directed to an impact absorption and detection system, including: one or more deflectable arch springs, having at least one leg with proximal and distal ends; and one or more bases, each of the proximal and distal ends attached to a base. Some embodiments may include: a plurality of arch spring assemblies, including: a deflectable arch spring having at least one leg with proximal and distal ends; one or more bases, each of the proximal and distal ends attached to a base; at least one sensor attached to the arch spring assembly; wherein the plurality of arch spring assemblies is configured in a chainmail arrangement and a base of one arch spring assembly is connected with a base of another arch spring assembly; a processor electrically connected to the sensors attached to the plurality of arch spring assemblies; and a data store in communication with the processor.
Owner:CHURCH HILL PUBLISHING

Impact deflection, absorption and sensing device and system

The present invention is directed to an impact absorption and detection system, including: one or more deflectable arch springs, having at least one leg with proximal and distal ends; and one or more bases, each of the proximal and distal ends attached to a base. Some embodiments may include: a plurality of arch spring assemblies, including: a deflectable arch spring having at least one leg with proximal and distal ends; one or more bases, each of the proximal and distal ends attached to a base; at least one sensor attached to the arch spring assembly; wherein the plurality of arch spring assemblies is configured in a chainmail arrangement and a base of one arch spring assembly is connected with a base of another arch spring assembly; a processor electrically connected to the sensors attached to the plurality of arch spring assemblies; and a data store in communication with the processor.
Owner:CHURCH HILL PUBLISHING

Vehicle occupant analysis model for vehicle impacts

A method of simulating a vehicle impact that involves generating a first finite element model of the vehicle, a multi-body model, and a partial vehicle finite element model. The method also involves generating a coupled model that includes at least a portion of the multi-body model and at least a portion of the partial vehicle finite element model. Additionally, the method includes running at least one impact simulation with the coupled model to thereby identify the effects of the impact on the vehicle and / or the occupant.
Owner:FCA US
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products