Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

32results about "V-antennas" patented technology

Method and apparatus for monitoring parameters of an RF powered load in the presence of harmonics

A method and apparatus for measuring electrical characteristics (e.g. current, voltage, phase, etc.) between a power source and a load at a set of harmonic frequencies to determine information about the load (e.g., load impedance, power dissipation, etc). According to one aspect of the invention, a first circuit detects a set of electrical characteristics (e.g., current, voltage, and / or phase) of a signal between the power source and the load. A second circuit, coupled to the first circuit to receive the set of electrical characteristics, provides data representing the set of electrical characteristics at a harmonic frequency associated with the signal. A third circuit, coupled to the second circuit, receives the data and determines information about the load (e.g., impedance, power dissipation, discharge current, etc.) at the harmonic frequency. The information could be used in any number of ways, such as controlling an impedance matching network that may be used in conjunction with the power source and the load, identifying / monitoring a load condition(s), etc.
Owner:RF POWER PRODS

Smart card and method for its production

A smart card having an extended communication distance includes a card body, at least one chip and at least one antenna attached to the chip, wherein the chip and the antenna are embedded in the card body. The smart card is characterized in that the antenna is provided with at least one metal core.
Owner:INT BUSINESS MASCH CORP

Smart card and method for its production

A smart card having an extended communication distance includes a card body, at least one chip and at least one antenna attached to the chip, wherein the chip and the antenna are embedded in the card body. The smart card is characterized in that the antenna is provided with at least one metal core.
Owner:IBM CORP

Process for producing a metal layer on a substrate body, and substrate body having a metal layer

Process for producing a metal layer on a substrate body. The process includes applying conductive particles to a surface of the substrate body, so that the conductive particles are fixed to the substrate body, and metallizing the substrate body together with the particles chemically and / or by electrodeposition in a metallization bath so as to form the metal layer.
Owner:INFINEON TECH AG

Antenna device

Linear elements 101a to 101d are conductors, which have the element length equivalent to half a wavelength, have been placed so that they may draw a diamond shape. Delay elements 102a and 102b are bent conductors, which have a total length equivalent to one fourth wavelength and a length L2 equivalent to one eighth. The linear elements 101a and 101c are connected one another via the delay element 102a, while the linear elements 101b and 101d are connected one another via the delay element 102b. A feeding section 103 is connected to each of the ends of the linear elements 101a and 101b for feeding power to them. Between the tips of the linear elements 101c and 101d, a gap with a length L3 is left. A reflector 104 has been placed at a distance h from a diamond-shape antenna with delay elements along the −Z axis, the distance h being equivalent to 0.42 wavelength. This achieves the antenna device, which may be suitably mounted on any of small wireless apparatuses and form a primary beam, of which horizontally-polarized wave or vertically-polarized wave tilts toward the horizontal direction.
Owner:PANASONIC CORP

Log periodic antenna

A log periodic antenna includes first and second transmission lines parallel with each other; and a plurality of broadband radiation elements having first sides electrically connected to the first and second transmission lines, a predetermined angle being defined between the first sides of the broadband radiation elements and the first and second transmission lines, and second sides not electrically connected with the first and second transmission lines, the second sides having radiation surfaces larger than radiation surfaces of the first sides. A plurality of broadband radiation elements electrically connected with the first transmission line and a plurality of broadband radiation elements electrically connected with the second transmission line are positioned to face each other with reference to the first and second transmission lines.
Owner:ELECTRONICS & TELECOMM RES INST

Methods of removing aerosols from the atmosphere

InactiveUS20080283386A1Increasing ionization levelEfficient and optimal atmospheric ionizationRecreational ice productionLighting and heating apparatusRadial spokeIonization
An antenna is disclosed to efficiently ionize the atmosphere for the purpose of reducing the aerosol counts, and therefore the number of poluted particles in suspension in the atmosphere, by deposition to ground. The antenna includes peripheral nodes and a central node. Each of the peripheral nodes is connected to adjacent peripheral nodes through peripheral spokes. The peripheral nodes are also connected to the central node through radial spokes. Electric power is applied to the peripheral spokes and the radial spokes causing the antenna to charge the atmosphere through the emission of ions. The antenna minimizes an attenuation factor that reduces ionization efficiency and reduces the land requirements for its installation.
Owner:IONOGENIES CORP

Broadband antenna

There is provided a broadband antenna including: an insulating block having opposing first and second main surfaces and a side surface between the first and second main surfaces; a first radiator pattern formed on the first main surface and having a tapered slot with an open end; and a second radiator pattern including two patterns connected to opposing ends of the first radiator pattern, respectively, and extending to the second main surface.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD

Three-dimensional antenna and related wireless communication device

A three-dimensional antenna includes a substrate, a radiator, a second radiator, a signal feeding element, and a grounding element. The radiator is installed on the substrate. The radiator includes a first child radiator and a second child radiator. The first child radiator has a first end and a second end. The second child radiator has a first end and a second end, wherein the second end of the second child radiator is coupled to the second end of the first child radiator. The second radiator is coupled to the radiator. The signal feeding element is coupled to the first end of the first child radiator. The grounding element is coupled between the substrate and the first end of the second child radiator. The first child radiator and the second child radiator form an inverted V-shape installed on the substrate.
Owner:WISTRON NEWEB

Digital television broadcast signal receiver

In multi-directional antennas connected to a digital TV broadcast signal receiver, when a receiving channel is selected, if an antenna is set to the same direction as a previously stored direction, and signals cannot be received, the previously stored direction data is deleted, and if the best receiving direction is searched by the auto-scan, and a receivable direction does not match the previously stored receiving direction, the stored direction information is all deleted, the entire area scan is performed over all directions for all channels, and a new receiving direction for each channel is determined by the obtained best receiving direction. By doing this, when signals becomes unreceivable on a given channel while receiving them with a direction-adjusted smart antenna, meaningless time for adjusting directions is saved and the best reception condition is always obtained quickly by detecting the direction misalignment as soon as possible and updating the direction data on all other channels as well in the early stages.
Owner:FUNAI ELECTRIC CO LTD

Broadband antenna

There is provided a broadband antenna including: an insulating block having opposing first and second main surfaces and a side surface between the first and second main surfaces; a first radiator pattern formed on the first main surface and having a tapered slot with an open end; and a second radiator pattern including two patterns connected to opposing ends of the first radiator pattern, respectively, and extending to the second main surface.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD

Digital television broadcast signal receiver

InactiveUS20060020988A1Meaningless timeMeaningless effortTelevision system detailsRhombic antennasSmart antennaDirection information
In multi-directional antennas connected to a digital TV broadcast signal receiver, when a receiving channel is selected, if an antenna is set to the same direction as a previously stored direction, and signals cannot be received, the previously stored direction data is deleted, and if the best receiving direction is searched by the auto-scan, and a receivable direction does not match the previously stored receiving direction, the stored direction information is all deleted, the entire area scan is performed over all directions for all channels, and a new receiving direction for each channel is determined by the obtained best receiving direction. By doing this, when signals becomes unreceivable on a given channel while receiving them with a direction-adjusted smart antenna, meaningless time for adjusting directions is saved and the best reception condition is always obtained quickly by detecting the direction misalignment as soon as possible and updating the direction data on all other channels as well in the early stages.
Owner:FUNAI ELECTRIC CO LTD

Antenna Apparatus

An antenna apparatus capable of main beam direction switching is provided that achieves high gain with a small, planar configuration. Rhombic antenna sections composed of linear elements 101a through 101d, 102a through 102d, and 103a through 103d are arranged in the same plane, and the rhombic antenna sections are connected by linear linking elements 104a through 104d. Linear detour elements 105a and 105b are connected to the pair of vertices of the rhombic antenna sections arranged at each end. Feed points 106a and 106b are provided at the other opposite two pairs of vertices of any of the rhombic antenna sections, and the opposite vertices of the other rhombic antenna sections are connected by linear elements. A plate reflector is arranged at a distance h from, and parallel to, the surface on which the rhombic antenna elements are arranged.
Owner:PANASONIC CORP

Variable antenna apparatus for a mobile terminal

A variable antenna apparatus for a mobile terminal. The variable antenna apparatus includes a radiation component that is rotatably coupled with the mobile terminal, a feeding component that is adjacent to a first end part of the radiation component and electrically connected to a radio frequency board of the mobile terminal. A grounding component is adjacent to the first end part of the radiation component and selectively connected to a ground of the radio frequency board as the radiation component is rotated. The antenna apparatus is accommodated in a terminal so that it is possible to conveniently carry the terminal, and the antenna is rotatably protruded from the terminal during a telephone call, such that appropriate antenna gain is achieved.
Owner:SAMSUNG ELECTRONICS CO LTD

Methods of removing aerosols from the atmosphere

An antenna is disclosed to efficiently ionize the atmosphere for the purpose of reducing the aerosol counts, and therefore the number of poluted particles in suspension in the atmosphere, by deposition to ground. The antenna includes peripheral nodes and a central node. Each of the peripheral nodes is connected to adjacent peripheral nodes through peripheral spokes. The peripheral nodes are also connected to the central node through radial spokes. Electric power is applied to the peripheral spokes and the radial spokes causing the antenna to charge the atmosphere through the emission of ions. The antenna minimizes an attenuation factor that reduces ionization efficiency and reduces the land requirements for its installation.
Owner:IONOGENIES CORP

Performance improved structure and method of mobile communication terminal antenna

The invention relates to a structure and a method for improving the antenna performance for mobile communication terminal. The antenna can match with DMB television broadcasting frequency and receive signal wirelessly with short length. The mobile communication terminal antenna comprises a first antenna part and a second antenna part, which is characterized in that: setting plural separating metal auxiliary antennae around the first antenna and fixing the auxiliary antennae with insulating state.
Owner:LG ELECTRONICS (CHINA) R&D CENT CO LTD

Antenna device radio device using the device, and radio repeater

Antenna elements (1 to 4) are arranged to form rhombuses, each side having a length (a) of a half wavelength ( lambda / 2). Antenna elements (5 to 12) are bent at three points so that each side can have a length (b) of a quarter wavelength ( lambda / 4). Groups of antenna elements (1 to 4), (5 to 8) and (9 to 12) are connected as shown in the figure. The antenna elements (9, 10) and the antenna elements (11, 12) are connected to a feeder (13). This configuration provides a high-gain antenna having a simplified flat structure.
Owner:PANASONIC CORP

Portable wideband antenna-radiated signal generator

A portable wideband harmonic signal generator includes circuitry for generating a signal having a selected fundamental frequency, for producing a signal having a harmonic series of the selected fundamental frequency, for transferring the signal having the harmonic series using a balanced impedance output, and for directionally transmitting transferred signal having the harmonic series using a directional antenna having a characteristic impedance that is matched to the balanced impedance output. There is thus provided a compact, efficient transmitter and antenna assembly for transmitting a wideband signal.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Antenna device

InactiveUS8836595B2Accurately receive radio waves comingResonant long antennasAntenna supports/mountingsEngineeringRadio wave
An antenna device that radiates or receives a radio wave includes: a first wire line; a second wire line that is parallel to the first wire line; a power feeding / receiving point that is provided at proximal portions of the first wire line and second wire line; and a terminal resistance that is provided at distal end portions of the first wire line and second wire line.
Owner:TOYOTA JIDOSHA KK

Variable antenna apparatus for a mobile terminal

A variable antenna apparatus for a mobile terminal. The variable antenna apparatus includes a radiation component that is rotatably coupled with the mobile terminal, a feeding component that is adjacent to a first end part of the radiation component and electrically connected to a radio frequency board of the mobile terminal. A grounding component is adjacent to the first end part of the radiation component and selectively connected to a ground of the radio frequency board as the radiation component is rotated. The antenna apparatus is accommodated in a terminal so that it is possible to conveniently carry the terminal, and the antenna is rotatably protruded from the terminal during a telephone call, such that appropriate antenna gain is achieved.
Owner:SAMSUNG ELECTRONICS CO LTD

Antenna device

Linear elements 101a to 101d are conductors, which have the element length equivalent to half a wavelength, have been placed so that they may draw a diamond shape. Delay elements 102a and 102b are bent conductors, which have a total length equivalent to one fourth wavelength and a length L2 equivalent to one eighth. The linear elements 101a and 101c are connected one another via the delay element 102a, while the linear elements 101b and 101d are connected one another via the delay element 102b. A feeding section 103 is connected to each of the ends of the linear elements 101a and 101b for feeding power to them. Between the tips of the linear elements 101c and 101d, a gap with a length L3 is left. A reflector 104 has been placed at a distance h from a diamond-shape antenna with delay elements along the −Z axis, the distance h being equivalent to 0.42 wavelength. This achieves the antenna device, which may be suitably mounted on any of small wireless apparatuses and form a primary beam, of which horizontally-polarized wave or vertically-polarized wave tilts toward the horizontal direction.
Owner:PANASONIC CORP

Antenna apparatus

An antenna apparatus capable of main beam direction switching is provided that achieves high gain with a small, planar configuration. Rhombic antenna sections composed of linear elements 101a through 101d, 102a through 102d, and 103a through 103d are arranged in the same plane, and the rhombic antenna sections are connected by linear linking elements 104a through 104d. Linear detour elements 105a and 105b are connected to the pair of vertices of the rhombic antenna sections arranged at each end. Feed points 106a and 106b are provided at the other opposite two pairs of vertices of any of the rhombic antenna sections, and the opposite vertices of the other rhombic antenna sections are connected by linear elements. A plate reflector is arranged at a distance h from, and parallel to, the surface on which the rhombic antenna elements are arranged.
Owner:PANASONIC CORP

Radio signal receiving system

A radio signal receiving system for providing a signal to a transceiver includes a signal retrieving module and a signal processing module. The signal retrieving module retrieves a radio signal through one of a conducting wire in an electrical outlet, a conducting wire in a vehicular cigarette lighter, and a metallic vehicular casing. The radio signal receiving system operates without any conventional self-contained antenna and includes a radio signal receiving carrier which is either made from a conventional conducting wire or made of a metal to thereby enhance the efficiency of signal reception.
Owner:YI CHANG HSIANG INDAL

Wideband antenna

A wideband antenna includes a radiation element, first and second extension elements, first and second reflection elements, and a feeding element. The radiation element is symmetric to a reference direction and has a top edge, a bottom edge, a first side edge, and a second side edge. A width of the radiation element gradually increases along the reference direction. The first and second extension elements are extended toward the reference direction respectively from two ends of the top edge and are mirror-symmetric to each other with respect to the reference direction. Widths of the first and second extension elements gradually decrease along the reference direction. The first and second reflection elements are respectively opposite to the first and second side edges and are mirror-symmetric to each other with respect to the reference direction. The feeding element is electrically connected to the bottom edge and has a feeding point.
Owner:WISTRON CORP

Determination of gain characteristics of a circularly-polarized antenna

System and method for determining gain characteristics of a circularly-polarized antenna. The method includes receiving a measured first amplitude of a forward gain between a circularly-polarized antenna probe of a first type and a linearly-polarized standard-gain antenna, a measured second amplitude of a forward gain between a circularly-polarized antenna probe of a first type and a circularly-polarized antenna under test, and a measured third amplitude of a forward gain between a circularly-polarized antenna probe of a second type and the circularly-polarized antenna under test. The method also includes determining a left-hand circularly-polarized gain and a right-hand circularly-polarized gain of the circularly-polarized antenna under test based on the measured first amplitude, the measured second amplitude, the measured third amplitude, and a cross-polarization level of the circularly-polarized antenna probes of the first and second types. The determination may be performed using one or more processors.
Owner:CITY UNIVERSITY OF HONG KONG

Determination of gain characteristics of a circularly-polarized antenna

System and method for determining gain characteristics of a circularly-polarized antenna. The method includes receiving a measured first amplitude of a forward gain between a circularly-polarized antenna probe of a first type and a linearly-polarized standard-gain antenna, a measured second amplitude of a forward gain between a circularly-polarized antenna probe of a first type and a circularly-polarized antenna under test, and a measured third amplitude of a forward gain between a circularly-polarized antenna probe of a second type and the circularly-polarized antenna under test. The method also includes determining a left-hand circularly-polarized gain and a right-hand circularly-polarized gain of the circularly-polarized antenna under test based on the measured first amplitude, the measured second amplitude, the measured third amplitude, and a cross-polarization level of the circularly-polarized antenna probes of the first and second types. The determination may be performed using one or more processors.
Owner:CITY UNIVERSITY OF HONG KONG

Wideband antenna

A wideband antenna includes a radiation element, first and second extension elements, first and second reflection elements, and a feeding element. The radiation element is symmetric to a reference direction and has a top edge, a bottom edge, a first side edge, and a second side edge. A width of the radiation element gradually increases along the reference direction. The first and second extension elements are extended toward the reference direction respectively from two ends of the top edge and are mirror-symmetric to each other with respect to the reference direction. Widths of the first and second extension elements gradually decrease along the reference direction. The first and second reflection elements are respectively opposite to the first and second side edges and are mirror-symmetric to each other with respect to the reference direction. The feeding element is electrically connected to the bottom edge and has a feeding point.
Owner:WISTRON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products