Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5509results about "Mixers" patented technology

Systems and methods of forming particles

The present invention generally relates to systems and methods of forming particles and, in certain aspects, to systems and methods of forming particles that are substantially monodisperse. Microfluidic systems and techniques for forming such particles are provided, for instance, particles may be formed using gellation, solidification, and/or chemical reactions such as cross-linking, polymerization, and/or interfacial polymerization reactions. In one aspect, the present invention is directed to a plurality of particles having an average dimension of less than about 500 micrometers and a distribution of dimensions such that no more than about 5% of the particles have a dimension greater than about 10% of the average dimension, which can be made via microfluidic systems. In one set of embodiments, at least some of the particles may comprise a metal, and in certain embodiments, at least some of the particles may comprise a magnetizable material. In another set of embodiments, at least some of the particles may be porous. In some embodiments, the invention includes non-spherical particles. Non-spherical particles may be formed, for example, by urging a fluidic droplet into a channel having a smallest dimension that is smaller than the diameter of a perfect mathematical sphere having a volume of the droplet, and solidifying the droplet, and/or by exposing at least a portion of a plurality of particles to an agent able to remove at least a portion of the particles.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Liquid transfer device

Provided is a liquid transfer device which controls electrically liquid position. The surface of the liquid transfer device is provided with unevenness in order to solve a problem of having a large number of electrodes for controlling voltage. The number of electrodes for controlling voltage can be halved by utilization of restoring force of liquid to a spherical shape by surface tension, in addition to electrical force.
Owner:HITACHI HIGH-TECH CORP

Microfluidic device and methods of using same

A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
Owner:STANDARD BIOTOOLS INC

Compounder Apparatus

A containment assembly for enclosing a medication container may comprise a first housing portion or interface portion having a proximal end and a distal end. The interface portion may include a housing wall which defines a channel spanning from the proximal end to the distal end. The channel may be open at the proximal and distal end. The containment assembly may further comprise at least one pierceable septum disposed at least at one of: on the proximal end of the channel and within the channel forming a barrier between the proximal end of the channel and distal end of the channel of the interface portion. The containment assembly may further comprise a variable-volume housing portion having a variable volume chamber. The variable-volume portion chamber of the variable-volume housing portion may be in fluid communication with the distal end of the channel.
Owner:DEKA PROD LLP

Solid-liquid mixing device

The invention provides a solid-liquid mixing device which is used for mixing a fracturing fluid. The solid-liquid mixing device contains a low-temperature and pressure resistant enclosed mixing container, a solid introducing port which is arranged on the mixing container and used for introducing solid particles of the fracturing fluid into an inner chamber of the mixing container, a liquid introducing port which is disposed on the mixing container and used for introducing a base solution of the fracturing fluid into the inner chamber, and a solid-liquid outlet which is arranged on the mixing container and used for exporting the fracturing fluid out of the inner chamber. According to the solid-liquid mixing device provided by the invention, by the adoption of the low-temperature and pressure resistant enclosed mixing container, the solid-liquid mixing device can meet mixing requirements for low temperature under pressure; and as the mixing container is respectively provided with the solid introducing port, the liquid introducing port and the solid-liquid outlet, the process of putting the solid particles and the base solution into the mixing container and the process of exporting the fracturing fluid out of the mixing container will not interfere with each other, and mixing of the fracturing fluid can be continuously carried out.
Owner:YANTAI JEREH OILFIELD SERVICES GROUP

System for stirring growth medium

An improved system and method for stirring suspended solids in a liquid media to enhance sample growth and improve sample detection results. The system and method employs a sample vessel holder which adapted to receive at least one sample vessel which contains the solids and liquid media and a stirrer, such as a ferrous metal filled stirrer, and maintain the sample vessel in a position such that the longitudinal axis of the sample vessel extends at an angle substantially less than 90 degrees with respect to the horizontal, such as within the range of about 15 degrees to about 25 degrees with respect to the horizontal. The system and method further employs a magnet driver, adapted to move a magnet, such as a rare earth magnet, proximate to an outer surface of the sample vessel to permit the magnet to impose a magnetic influence on the stirrer to move the stirrer in the sample vessel. Specifically, the magnet driver is adapted to move and, specifically, rotate the magnet such that the magnetic influence moves the stirrer along a side wall of the sample vessel. The magnet driver is further adapted to move the magnet away from said outer surface of the sample vessel to allow gravity to move the stirrer toward the bottom of the sample vessel. This technique therefore provides a more gentle and controlled stirring of the suspended solution.
Owner:BECTON DICKINSON & CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products