Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

268 results about "IQ imbalance" patented technology

IQ imbalance is a performance-limiting issue in the design of direct conversion receivers, also known as zero intermediate frequency (IF) or homodyne receivers. Such a design translates the received radio frequency (RF, or passband) signal directly from the carrier frequency (fc) to baseband using only one mixing stage. The traditional heterodyne receiver structure needs an intermediate-frequency (IF) stage between the RF and baseband signals. The direct conversion receiver structure does not have an IF stage, and does not need an image rejection filter. Due to the lower component count, it is easier to integrate. However, a direct-conversion RF front-end suffers from two major drawbacks: one is IQ imbalance and the other is DC offset. When designing a homodyne receiver, control of IQ imbalance is necessary to limit signal demodulation error.

IQ imbalance compensation

The present invention discloses a method and apparatus of IQ imbalance compensation for a receiver. The repetitive attribute of the preamble in a signal received by the receiver is used to estimate the IQ imbalance parameters. The data carried by the preamble repeats itself every N sampling intervals. A MSE equation is derived based on assuming the ratios between any two sampling points separated by N samples are identical, and the IQ imbalance parameters can be estimated by solving the MSE equation using the LS algorithm. Consequently, the IQ mismatch offset of the signal is compensated according to the estimated parameters.
Owner:VIA TECH INC

All-digital satellite signal simulated source

The invention provides an all-digital satellite signal simulated source. The all-digital satellite signal simulated source comprises a double-port storage, the double-port storage is a FPGA which provides interfaces for various rate conversions between coding and modulation, is connected with a digital to analog converter through a high-speed serial interface to form a core hardware framework of the satellite signal simulated source, and is connected with a broadband filter directly through a simulation output end to produce multimode high and moderate frequency broadband satellite signal simulated signals with code rates which can vary continuously, a digital signal processor serves as a main control device of the simulated source and performs analysis of various parameters issued by a monitor and parameter configuration of the FPGA, a 32-channel parallel modulation system is arranged inside the FPGA, for example, a 32-channel direct digital synthesizer (DDS) performs parallel output and composition of the central frequency, the FPGA determines the overturn of the carrier phase according to a symbol rate and a main frequency of parallel calculation, IQ two-channel signals, signal coding, code conversion and quadrature modulation are produced through a logical algorithm, a Q channel uniformization coefficient is calculated according to an IQ unbalanced parameter, Q channel uniformization coefficient and the Q channel signal amplitude are subjected to multiply-add arithmetic to calculate the Q channel amplitude, IQ is added, and a unbalanced quadrature phase shift keying (UQPSK) modulation method is simulated.
Owner:10TH RES INST OF CETC

MIMO-OFDM system carrier frequency bias and sampling offset combined estimation method under IQ unbalance

The invention discloses a method for jointly estimating carrier wave frequency deviation and sampling deviation of an MIMO-OFDM system under the influence of imbalanced IQ, which is applied to the MIMO-OFDM system which is provided with transmitting antennas with the quantity of Q, receiving antennas with the quantity of P, subcarrier waves with the quantity of N and pilot frequency subcarrier waves with the quantity of M; the method comprises the following steps: at a transmitting terminal, pilot frequency is inserted at a position on the identical subcarrier wave aimed at each transmitting antenna; the pilot frequencies are symmetrically distributed at two sides of a central subcarrier wave; at a receiving terminal, first an IQ imbalance parameter is estimated by utilizing two pilot frequencies in an OFDM symbol and mirror pilot frequencies thereof, the influence on the system of IQ imbalance is compensated, and then the joint estimation of the carrier wave frequency deviation and the sampling deviation is accomplished according to a maximum likelihood estimation principle; and the method for jointly estimating the carrier wave frequency deviation and sampling deviation of the MIMO-OFDM system under the influence of imbalanced IQ makes the most of designed OFDM symbolic structure to accomplish the estimation of the IQ imbalance, carrier wave frequency deviation and sampling deviation, and has the advantages of flexible method, simple realization, and the like.
Owner:GUANGDONG UNIV OF TECH

Digital pre-distortion correcting device and method against IQ unbalance distortion

The invention puts forward an IQ unbalance correcting technology based on a digital pre-distortion system and belongs to the field of wireless communication. After quadrature modulation, signals enter the digital pre-distortion system by two paths, channel estimation is firstly conducted to obtain corresponding estimation parameters and data initialization is carried out; then based on input in-phase signals and orthogonal signals, direct current offset factors of the in-phase signals and the orthogonal signals are calculated and direct current compensation is conducted; based on the input in-phase signals and orthogonal signals, gain unbalance factors and phase unbalance factors of the in-phase signals and the orthogonal signals are calculated; according to a mirror image correction model, corresponding factors are substituted to carry out the mirror image correction; finally, the compensated gain factors and the phase factors are updated and the IQ unbalance correcting process is completed. By means of the digital pre-distortion correcting method against the IQ unbalance distortion, system hardware complexity and the cost can be reduced, and meanwhile error estimation precision and compensation precisions are improved.
Owner:CERTUS NETWORK TECHNANJING

Methods and apparatus for measuring and/or using transmitter and/or receiver iq imbalance information and/or DC offset information

A wireless communications device, e.g., a mobile node supporting direct peer to peer communications, performs a self-calibration of one or more of: receiver IQ imbalance, transmitter IQ imbalance, receiver DC offset, and transmitter DC offset. The wireless communications device, operating in calibration mode, intentionally sets the oscillator frequency used for downconversion in its receiver module to a different frequency than the oscillator frequency used for upconversion in its transmitter module. A first baseband signal, e.g., a single tone test signal, is input to the transmitter module and an upconverted transmit signal is generated. The transmit signal is routed via a feedback loop to the receiver, which performs a downconversion operation. Power and / or phase measurements of the signals output from the downcoversion are used to determine IQ imbalance compensation information and DC offset compensation information. The determined compensation information is used subsequently when operating in a communications mode of operation.
Owner:QUALCOMM INC

IQ imbalance estimation and correction equipment, system and method

The invention provides IQ imbalance estimation and correction equipment, system and method. Quadrature demodulation of a received training sequence sent by a sending terminal is performed; a frequency offset estimate value of the training sequence is determined according to a reception signal in the demodulated training sequence; an IQ imbalance correction parameter of a receiving terminal is obtained through calculation according to the frequency offset estimate value; influences of carrier frequency offset are taken into consideration during estimation of the IQ imbalance correction parameter of the receiving terminal; an IQ imbalance correction parameter of the sending terminal is obtained according to the training sequence subjected to frequency offset compensation and the IQ imbalance correction by the receiving end; and influences of carrier frequency offset are also taken into consideration during estimation of the IQ imbalance correction parameter of the sending terminal. Therefore, IQ imbalance estimation and correction of the sending terminal is achieved. The IQ imbalance estimation and correction of the receiving terminal is achieved through a remote loopback mode, and the accuracy of IQ imbalance correction of a sending terminal and a receiving terminal of a system is improved.
Owner:HUAWEI TECH CO LTD

Methods for Compensating for I/Q Imbalance in OFDM Systems

The present invention relates to methods for demodulating orthogonal frequency division multiplexing (OFDM) modulated signals. In particular, this invention relates to methods for in-phase (I) and quadrature phase (Q) imbalance compensation in OFDM systems. For example, the present invention relates to methods for calculating an IQ imbalance compensated signal from a received signal, comprising the steps of: removing DC from the received signal; calculating an autocorrelation matrix of IQ signal vector of the received signal; estimating IQ imbalance compensation values, K1 and K2, as a function of an amplitude imbalance, g, and a phase imbalance, θ; and calculating an IQ compensated signal as a function of the estimated K1 and K2.
Owner:AUGUSTA TECHNOLOGIE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products