Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

70 results about "Duty cycle corrector" patented technology

Integrated circuit devices having duty cycle correction circuits that receive control signals over first and second separate paths and methods of operating the same

Digital duty cycle correction circuits are provided including a duty cycle detector circuit configured to generate first and second control values associated with a first internal clock signal and a second internal clock signal, respectively. A comparator circuit is also provided and is configured to compare the first control value to the second control value and provide a comparison result. A counter circuit is configured to perform an addition and / or a subtraction operation responsive to the comparison result to provide a digital code. A digital to analog converter is configured to generate third and fourth control values responsive to the digital code. Finally, a duty cycle corrector circuit is configured to receive first and second external clock signals and the first through fourth control values and generate the first and second internal clock signals having a corrected duty cycle. The first and second control values are received over a first path and the third and fourth control values are received over a second path, different from the first path. Related methods of operating duty cycle correction circuits are also provided.
Owner:SAMSUNG ELECTRONICS CO LTD

Duty cycle corrector

A device that uses an input clock signal to generate an output clock signal with a desired frequency is provided. The device uses a voltage controlled delay element that outputs a reset signal to a flip-flop dependent on a bias signal and the input clock signal. When triggered, the flip-flop outputs a transition on the output clock signal, which, in turn, serves as an input to a duty cycle corrector that generates the bias signal dependent on the configuration of the duty cycle corrector. The duty cycle corrector may be configured to generate the bias signal so as to be able to operatively control the duty cycle of the output clock signal.
Owner:ORACLE INT CORP

Duty cycle corrector and duty cycle correction method

The invention relates to a duty cycle corrector for generating from an input clock signal an output clock signal having a desired duty cycle. The duty cycle corrector comprises a pulse generating stage for generating from the input clock signal a pulsed clock signal. The pulse generating stage converts rising edges of the input clock signal into pulses, each of which pulses is shorter than the desired duty cycle times the clock period. The duty cycle corrector further comprises a pulse stretching stage for generating from the pulsed clock signal the output clock signal, the pulse stretching stage delaying falling edges of the pulsed clock signal by a controlled delay. The duty cycle corrector may comprise a duty cycle detector for generating a control signal as a function of the duty cycle of the output clock signal, and a feedback path for delivering the control signal to the pulse stretching stage so as to increase the controlled delay when the duty cycle is less than the desired duty cycle and to decrease the controlled delay when the duty cycle is greater than the desired duty cycle. The invention also relates to a method of generating from an input clock signal an output clock signal having a desired duty cycle.
Owner:NXP USA INC

Duty cycle correction circuit

A duty cycle correction circuit comprises a duty cycle detector, a filter, a comparator, a SAR DAC, an equalization device, a pass gate circuit, and a duty cycle corrector. The duty cycle detector generates control signals in response to internal clock signals. The equalization device equalizes voltage levels of the control signals, and the pass gate circuit applies the control signals to the duty cycle corrector. The filter obtains average voltages of the control signals. The comparator compares output signals from the filter to generate a comparison result. The SAR DAC performs a SAR algorithm to generate analog output signals based on the comparison result. The duty cycle corrector receives external clock signals, the analog output signals, and output signals from the pass gate circuit to generate the internal clock signals with a corrected duty cycle.
Owner:ELITE SEMICON MEMORY TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products