Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

A kind of nickel-based selective hydrogenation catalyst and preparation method thereof

A hydrogenation catalyst and selective technology, applied in the direction of selective hydrofining, catalyst activation/preparation, catalyst carrier, etc., can solve the problem of selective hydrogenation of difficult whole-distillation pyrolysis gasoline and the inability to achieve macropore-mesoporous pore size Controllable adjustment and other issues to achieve the effect of improving the selectivity of diene hydrogenation, good anti-sulfur effect, and good gel capacity

Inactive Publication Date: 2019-05-17
QINZHOU UNIV
View PDF33 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

The disadvantage is that the size of the macropore (300nm or 400nm) is completely determined by the size of the polystyrene droplet introduced twice, that is, the size of the macropore depends on the size of the polystyrene droplet
The pore size cannot be adjusted by partially changing the components of the solution itself and the interaction of organic molecules in the system
Huining Li et al. (Inorganic Chemistry, 2009, 48:4421) also used the sol-gel method to introduce polymethyl methacrylate (PMMA) droplets with a single dispersed phase into the mixed solution using F127 as a template to achieve large Pore-the formation of macropores in mesoporous alumina, the disadvantage is that the size of the macropores is completely determined by the size of the secondary introduction of polymethyl methacrylate droplets, which cannot be achieved by partially changing the components of the solution system itself The adjustment of the pore size is used to realize the formation of the macropore-mesopore composite pore structure, so it is impossible to realize the controllable adjustment of the macropore-mesopore diameter. In the process of use, especially for the macromolecular catalytic process of complex components limitations
CN200610118523.1 The present invention relates to a method for selective hydrogenation of full-run pyrolysis gasoline, which mainly solves the technical problem in the prior art that it is difficult to selectively hydrogenate full-run pyrolysis gasoline with high colloid and water content

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • A kind of nickel-based selective hydrogenation catalyst and preparation method thereof
  • A kind of nickel-based selective hydrogenation catalyst and preparation method thereof

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0042] First, 8.0 g of the water-soluble chitosan pore-enlarging agent was added to deionized water at 50° C., and then acetic acid was added dropwise until the chitosan was completely dissolved to obtain an acid solution containing the pore-enlarging agent. Weigh 1.46g of phosphoric acid and 7.35g of magnesium nitrate respectively, and completely dissolve phosphoric acid and magnesium nitrate in 70g of distilled water to form an aqueous solution containing phosphorus and magnesium. Weigh 350g of pseudo-boehmite powder and 20.0g of fennel powder into the kneader, mix well, then add the mixed solution of phosphoric acid and magnesium nitrate, and finally add the acid solution containing chitosan to the pseudo-boehmite Knead evenly in the stone, and shape it into a clover shape through kneading-extrusion. Dry at 120° C. for 8 hours, and calcined at 700° C. for 4 hours to obtain an alumina carrier 1 containing phosphorus and magnesium. In carrier 1, phosphorus pentoxide is 0.5wt...

Embodiment 2

[0045] Add 8.0 g of the water-soluble chitosan pore-enlarging agent into deionized water at 50° C., and then add acetic acid dropwise until the chitosan is completely dissolved to obtain an acid solution containing the pore-enlarging agent. Weigh 1.09g of phosphoric acid and 9.12g of magnesium nitrate respectively, completely dissolve phosphoric acid and magnesium nitrate in 70g of distilled water to form an aqueous solution containing phosphorus and magnesium. Weigh 350g of pseudo-boehmite powder and 20.0g of fennel powder into the kneader, mix well, then add the mixed solution of phosphoric acid and magnesium nitrate, and finally add the acid solution containing chitosan to the pseudo-boehmite Knead evenly in the stone, and shape it into a clover shape through kneading-extrusion. Dry at 120° C. for 8 hours, and calcined at 700° C. for 4 hours to obtain an alumina carrier 1 containing phosphorus and magnesium. Then use phosphorus and magnesium to modify the surface of the ca...

Embodiment 3

[0048] The preparation method of the carrier was carried out according to Example 1. The difference is that the auxiliary component in the carrier also contains cerium, and the water-soluble chitosan pore-enlarging agent is replaced with a non-water-soluble chitosan pore-enlarging agent, and the chitosan formic acid solution is stirred with a magnetic stirrer for 30 minutes to obtain Alumina support with macroporous structure3. The contents of the auxiliary components phosphorus, magnesium and cerium in the carrier are respectively 1.8wt%, 2.0wt%, and 0.6wt% of the weight of the carrier. Its specific surface area and pore size distribution are shown in Table 1.

[0049] A solution containing nickel and tungsten was prepared to impregnate the alumina carrier 3, dried at 120° C. for 6 hours, and calcined at 500° C. for 6 hours to obtain the catalyst 3 . Catalyst 3 consists of: tungsten oxide content 5.5wt%, nickel oxide content 14wt%, alumina carrier content 80.5wt%

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
pore sizeaaaaaaaaaa
specific surface areaaaaaaaaaaa
diameteraaaaaaaaaa
Login to View More

Abstract

The invention relates to a nickel-based selective hydrogenation catalyst. The catalyst includes an alumina carrier with a macroporous structure and metal active components nickel and tungsten loaded on the carrier. The content of nickel oxide is 12- based on the total weight of the catalyst. 22wt%. The content of tungsten oxide is 1.5-8wt% based on the total weight of the catalyst. The alumina carrier uses chitosan as a pore expander. The alumina carrier with a macroporous structure contains auxiliary components phosphorus and magnesium to assist The percentages of the agent components phosphorus and magnesium based on the mass of the carrier are P respectively. 2 O 5 0.1-2.5wt%, MgO 0.1-2.5wt%, pore size distribution 60-180nm, macropore ratio 2-75%, pore volume 0.8-2.0ml / g, specific surface area 250-300m 2 / g. The catalyst has better colloid-holding capacity, strong resistance to arsenic, sulfur resistance and coking inhibition.

Description

technical field [0001] The invention relates to a selective hydrogenation catalyst for petroleum hydrocarbon products and a preparation method thereof, in particular to a nickel-based selective hydrogenation catalyst for one-stage selective hydrogenation of pyrolysis gasoline. Background technique [0002] Pyrolysis gasoline is an important by-product of steam cracking industrial production of ethylene and propylene, including C5-C10 fractions. The composition of pyrolysis gasoline is very complex, mainly including benzene, toluene, xylene, mono-olefins, di-olefins, straight-chain alkanes, cycloalkanes, and organic compounds of nitrogen, sulfur, oxygen, chlorine and heavy metals, etc., a total of more than 200 components, of which Benzene, toluene, and xylene (collectively referred to as BTX) are about 50-90%, and unsaturated hydrocarbons are 25-30%. According to the characteristics of a large amount of aromatics in pyrolysis gasoline, it has a wide range of uses. It can be...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): B01J27/18B01J27/188B01J37/08B01J37/02B01J35/10B01J32/00C10G45/38C10G45/50C10G45/08
CPCC10G45/08C10G45/38C10G45/50B01J23/002B01J27/1806B01J27/188B01J37/0018B01J37/0201B01J2523/00C10G2300/202B01J35/638B01J35/651B01J35/635B01J35/615B01J2523/22B01J2523/31B01J2523/3712B01J2523/51B01J2523/69B01J2523/847
Inventor 晁会霞张海燕颜曦明
Owner QINZHOU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products