Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

557results about "Collector with underground water as fluid" patented technology

System and method for heat recovery from geothermal source of heat

A system is disclosed for generating energy from a geothermal heat source. The system includes a fluid injection system configured for injecting fluid into a subterranean formation and a fluid extraction system configured for extracting fluid from the subterranean formation after being heated by the formation. The system further includes a heat transformer configured to receive a first fluid heated by the geothermal heat source at a first temperature and adapted to heat a second fluid to a second temperature via a series of chemical reactions. Furthermore, the system includes an energy generation unit configured to receive heated the second fluid at the second temperature from the heat transformer to increase the temperature of a third fluid which is used to generate energy.
Owner:NUOVO PIGNONE TECH SRL

Solar augmented geothermal energy

An apparatus and a method is disclosed for storage of solar energy in a subsurface geologic reservoir. The method includes transferring concentrated solar thermal energy to a fluid, thereby generating a supercritical fluid. The supercritical fluid is then injected into the subsurface geologic reservoir through at least one injection well. The subsurface geologic reservoir may be a highly permeable and porous sedimentary strata, a depleted hydrocarbon field, a depleting hydrocarbon field, a depleted oil field, a depleting oil field, a depleted gas field, or a depleting gas field. Once charged with the supercritical fluid, the subsurface geologic formation forms a synthetic geothermal reservoir.
Owner:MEKSVANH NINO

Method for self-circulation exploitation of geothermal energy of hot dry rock with multilateral well and volume fracturing technologies

InactiveCN105840146AAvoid the problem of not being able to connect efficientlyIncrease temperatureOther heat production devicesGeothermal energy generationInjection pressureDual action
The invention relates to the field of geothermal exploitation and provides a method for self-circulation exploitation of geothermal energy of hot dry rock with multilateral well and volume fracturing technologies. According to the method, firstly, multilateral well holes are drilled in different depths of a reservoir of the hot dry rock, the reservoir between upper and lower multilateral well holes is fractured with the volume fracturing technology, a high-permeability hot dry rock reservoir is constructed, and finally, thermal-carrying media are injected and exploited for geothermal exploitation. Annularly-injected low-temperature thermal-carrying media flow to the fractured reservoir of the hot dry rock along the multilateral well holes in the upper part of the reservoir, flow to the multilateral well holes in the lower part under the double actions of injection pressure and potential-energy difference and finally flow back to the ground along an oil pipe. According to the method, the multilateral well and fracturing technologies are sufficiently utilized, the reservoirs of the hot dry rock are effectively communicated, the problem about crack communication during conventional double-well fracturing for injection and exploitation is solved, the potential-energy difference in different depths can be further effectively utilized, and the flowing capability of the thermal-carrying media is greatly improved. With the use of the thermal insulation oil pipe, the thermal loss in the exploitation process of the thermal-carrying media is further reduced, and the exploitation efficiency of geothermal energy is improved.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Method for exploiting compact dry heat rock geothermal energy by utilizing long horizontal well self-circulation structure

The invention relates to a field of geothermal energy development and provides a method for exploiting compact dry heat rock geothermal energy by utilizing a long horizontal well self-circulation structure. According to the invention, a single long horizontal well in a dry heat rock storage layer is utilized, an oil pipe-loop empty circulation structure of the single long horizontal well is adopted under a condition of not cracking the dry heat rock storage layer for performing circulation injection and production of heat carrying medium. During the injection process, a horizontal segment can be utilized fully for heating the heat carrying medium. During a production process, a prestress heat isolation oil tube is used for reducing heat loss of the heat carrying medium by using the prestress heat isolation oil tube. According to the invention, fluid loss caused by cracking can be avoided and the contact area of a well shaft and the storage layer is increased effectively due to the long horizontal segment. During the injection and production process, the temperature difference of the heat carrying medium also causes heat siphonage, so that ground injection and suction pump power is reduced effectively. At the same time, due to the closeness of the long horizontal well self-circulation structure, condition is provided for performance optimization of the heat carrying medium and problems of corrosion and scale formation are avoided and the heat collecting process becomes more reliable and stable.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Building method for artificial dry-hot-rock geothermal reservoir

The invention provides a building method for an artificial dry-hot-rock geothermal reservoir and belongs to the field of artificial dry-hot-rock geothermal reservoir building. According to the technical scheme, the method includes the steps that supercritical carbon dioxide fracturing is conducted on the soft weak face or an interlayer formed along the igneous rock phase to generate a major crack, then large displacement of hydrofracturing is conducted on the interior of the major crack to generate secondary fracturing, bulk fracturing or cluster type fracturing of a dry hot rock body is generated under cyclic fracturing, and the artificial geothermal reservoir is built. The building method has the beneficial effects that the characteristics of low viscosity and easy diffusion of the supercritical carbon dioxide and the characteristic that the crack is easy to form due to the fact that the fracturing pressure of igneous rock under supercritical carbon dioxide fracturing is low are fully utilized; and in combination with the characteristics that the igneous rock is of the obvious rock phase structure and thermal fracturing is easy to generate, the problems that current hydrofracturing cannot be implemented to building of the artificial geothermal reservoir in a deep rock mass, the fracturing pressure is large, the crack group or the crack band of an ideal structure is difficult to form, and an artificial geothermal reservoir stratum is particularly difficult to build are solved.
Owner:TAIYUAN UNIV OF TECH

Method for exploring dry-hot-rock geotherm through underground heat siphon self-circulation

InactiveCN105863568ALow densityGo undergroundOther heat production devicesGeothermal energy generationSiphonGeothermal exploration
The invention relates to the field of geothermal exploitation and provides a method for exploring dry-hot-rock geotherm through underground heat siphon self-circulation. The method includes the steps that a heat-carrying medium circular flowing channel is built underground, and self-circulation flowing of the heat-carrying medium in the underground channel is achieved by fully utilizing the phenomenon of heat siphon caused by the density difference of the heat-carrying medium at various temperature differences. The circular flowing channel can be achieved by drilling two horizontal well holes in different depth positions of an injection and production well, and can also be achieved by fracturing fractures and an upper horizontal well hole of the well bottom injection and production well. The heat-carrying medium flowing in a circulating mode drives a turbine generator to rotate for power generation in the flowing process, and accordingly the dry-hot-rock geothermal energy is explored as electric energy. According to the method, the heat siphon phenomenon of the heat-carrying fluid is fully utilized, underground self-circulation flowing is achieved, extra power from the outside is not needed, and the method is suitable for geothermal exploration of dry-hot-rock reservoirs with high reservoir temperature and severe ground environment.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Simulation experiment device used for enhanced geothermal system and method for evaluating porous sandstone geothermal reservoir reconstruction by means of simulation experiment device

The invention discloses a simulation experiment device used for an enhanced geothermal system and a method for evaluating porous sandstone geothermal reconstruction by means of the simulation experiment device. The simulation experiment device comprises a heat exchanger chamber, a prefabricated rock, an electric heating panel, a constant-temperature liquid supply groove, two liquid colleting grooves and horizontal geostress simulation units, wherein an inlet and two outlets corresponding to the inlet are formed in the heat exchange chamber, and the inlet and the outlets all communicate with a cavity; and the prefabricated rock is arranged in the cavity, a first injection shaft, a first production shaft and a second production shaft are further arranged in the prefabricated rock, the injection shaft is located between the first production shaft and the second production shaft, the injection shaft communicates with the inlet, the first production shaft and the second production shaft communicate with the two outlets correspondingly, and preset seams, micro pressure sensors and micro temperature sensors are arranged in the prefabricated rock.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Geothermal Air Conditioning for Electrical Enclosure

An electrical equipment cabinet coupled to a closed loop in turn coupled to a groundwater source for exchanging heat energy with the closed loop for air-conditioning the interior of the electrical equipment cabinet. In the absence of a groundwater source a slinky loop is used as a substitute. The slinky loop is buried in the ground or located in a body of water located on or below ground.
Owner:GIAN MICHAEL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products