Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30 results about "Ventricular filling" patented technology

Ventricular filling is normally silent. When a third heart sound (S3) is audible during rapid ventricular filling, it may represent tensing of chordae tendineae and AV ring during ventricular relaxation and filling. This heart sound is normal in children; but is often pathological in adults and caused by ventricular dilation.

Atrioventricular delay adjustment

InactiveUS6882882B2Improved hemodynamic performanceMaintain performanceHeart defibrillatorsHeart stimulatorsAtrioventricular canalCardiac pacemaker electrode
In a system that includes a ventricular pacemaker, the system adjusts an atrioventricular delay to synchronize the onset of isovolumetric contraction with the completion of ventricular filling. The system adjusts the atrioventricular delay as a function of electrical and pressure data from the heart. The system further adjusts the atrioventricular delay as a function of measurements of the time interval between a cardiac occurrence such as a ventricular pace and the completion of ventricular filling. The system may also adjust the atrioventricular delay as a function of the heart rate.
Owner:MEDTRONIC INC

Predicting chronic optimal a-v intervals for biventricular pacing via observed inter-atrial delay

Herein provided are methods for optimizing the atrio-ventricular (A-V) delay for efficacious delivery of cardiac resynchronization therapy. The A-V delay is set such that pacing-induced left ventricular contraction occurs following completion of left atrial (LA) contraction. This maximizes left ventricular filling (preload) which theoretically results in optimal LV contraction via the Frank-Starling mechanism. In CRT devices, the programmed A-V delay starts with detection of electrical activity in the right atrium (RA). Thus, a major component of the A-V delay is the time required for inter-atrial conduction time (IACT) from the RA to the LA. This IACT can be measured during implantation as the time from the atrial lead stimulation artifact to local electrograms in a coronary sinus (CS) catheter. Assuming that the beginning of LA contraction closely corresponds with the beginning of LA electrical activity, the optimal AV delay should be related to the time between the start of RA electrical activity and the start of LA electrical activity plus the duration of LA atrial contraction. Thus the inventors hypothesized that during atrial pacing the IACT measured at implantation correlated with the echocardiographically defined optimal paced AV delay (PAV).
Owner:MEDTRONIC INC

System and method of determining arterial blood pressure and ventricular fill parameters from ventricular blood pressure waveform data

A system and method of determining hemodynamic parameters uses sensed ventricular blood pressure during a portion of ventricular pressure waveform following peak pressure. An estimated arterial diastolic pressure is based upon an amplitude of the sensed ventricular pressure corresponding to a time at which a first derivative of ventricular pressure as a function of time is at a minimum (dP / dtmin). Fill parameters such as isovolumetric relaxation constant, ventricular suction pressure, atrial kick pressure, and transvalve pressure gradient are derived from measured pressures representing minimum ventricular pressure, ventricular diastolic pressure, and diastasis pressure.
Owner:MEDTRONIC INC

Method of defining continuous heart rate vs AV delay values and sensed to paced AV delay offset in patients undergoing cardiac resynchronization therapy

A method of data management for optimizing the patient outcome from the provision of cardiac resynchronization therapy (CRT) is described. A regression equation is constructed using 3 data points on a plot of AV delay vs. HR. The x-axis consist of the three points consist of resting HR, HR at the optimal AV delay value during light exercise, and the upper tracking or paced HR. The y-values associated with the three points consist of the AV delay values computed using an equation for ventricular filling time and the optimally determined AV delay value. Also described is a process for determining the sensed to paced AV delay offset. The combined processes yield 4 (the three constant values in the polynomial regression equation Y=b2X2+b1X+a and the sensed to paced AV delay offset) which can be stored on the patient's pacemaker for determining dynamically the AV delay value which is physiologically fine-tuned for each patient from resting HR to the upper tracking or paced HR. In combination with visual observation and computer-assisted ranking of the dependent variables, a physician can utilize the resulting information to render decisions on the optimal choice of the programming biventricular pacemakers / ICDs and DDDR pacemakers for individual patients.
Owner:SHAPE MEDICAL SYST

Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker

A ventricularly implantable medical device that includes a sensing module that is configured to detect an artifact during ventricular filling and to identify an atrial event based at least on part onthe detected artifact. Control circuitry of the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart, wherein the ventricular pacing therapy is time dependent, at least in part, on the identified atrial event.
Owner:CARDIAC PACEMAKERS INC

Method of Defining Continuous Heart Rate vs AV Delay Values and Sensed to Paced AV Delay Offset in Patients Undergoing Cardiac Resynchronization Therapy

InactiveUS20120123493A1Optimizing patient outcomeHeart stimulatorsCardiac pacemaker electrodeVentricular filling
A method of data management for optimizing the patient outcome from the provision of cardiac resynchronization therapy (CRT) is described. A regression equation is constructed using 3 data points on a plot of AV delay vs. HR. The x-axis consist of the three points consist of resting HR, HR at the optimal AV delay value during light exercise, and the upper tracking or paced HR. The y-values associated with the three points consist of the AV delay values computed using an equation for ventricular filling time and the optimally determined AV delay value. Also described is a process for determining the sensed to paced AV delay offset. The combined processes yield 4 (the three constant values in the polynomial regression equation Y=b2X2+b1X+a and the sensed to paced AV delay offset) which can be stored on the patient's pacemaker for determining dynamically the AV delay value which is physiologically fine-tuned for each patient from resting HR to the upper tracking or paced HR. In combination with visual observation and computer-assisted ranking of the dependent variables, a physician can utilize the resulting information to render decisions on the optimal choice of the programming biventricular pacemakers / ICDs and DDDR pacemakers for individual patients.
Owner:SHAPE MEDICAL SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products