Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

81 results about "Optic layer" patented technology

Components and methods for use in electro-optic displays

An electro-optic display comprises, in order, a backplane comprising a plurality of pixel electrodes; a layer of a solid electro-optic medium; a main adhesive layer; and at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer. The electro-optic layer may be in direct contact with the backplane or separated therefrom by a thin auxiliary layer of adhesive. The main adhesive layer may be colored to provide a color filter array. An inverted front plane laminate useful in forming such a display comprises the same layers except that the backplane is replaced by a release sheet. The display combines good low temperature performance and good resolution at higher temperatures.
Owner:E INK CORPORATION

Electro-optic display with edge seal

Various types of edge seals for protecting electro-optic displays against environmental contaminants are described. In one type of seal, the electro-optic layer is sandwiched between a backplane and a protective sheet and a sealing material extends between the backplane and the protective sheet. In other seals, the protective sheet is secured to the backplane or to a second protective sheet adjacent the backplane. The electro-optic layer can also be sealed between two layers of adhesive or between one layer of adhesive and the backplane. Other seals make use of flexible tapes extending around the periphery of the display.
Owner:E INK CORPORATION

Display with overlayed electronic skin

This disclosure features an electronic display with overlayed electronic skin. The display includes an outer transparent display surface and can be placed in a dark state or in a bright state. The skin overlays the outer display surface and includes an electro-optic layer. Transparent electrically conductive layers are disposed on each side of the electro-optic layer. Electronic circuitry applies voltages to the electrically conductive layers enabling the electro-optic material of the electronic skin to be placed into a substantially transparent state and a reflective state. Images or colors can be displayed on the electronic skin while portions of the electronic skin are in the reflective state and light passing through the electronic skin is absorbed by the display in the dark state. When the display is in the bright state images or colors can be displayed on the display that can be seen through the electronic skin.
Owner:KENT DISPLAY SYST

Electro-optic media produced using ink jet printing

Ink jet printing can be used in the production of electro-optic displays for (a) forming a layer of a polymer-dispersed electrophoretic medium on a substrate; (b) forming a color electro-optic layer; (c) forming a color filter; and (d) printing electrodes and / or associated conductors on a layer of electro-optic material.
Owner:E INK CORPORATION

Electro-optic display with edge seal

An electro-optic display (100) comprises a backplane (102); an electro-optic layer (112) adjacent the backplane (102), the electro-optic layer (112) being smaller than the backplane (102) so as to leave a peripheral portion of the backplane extending beyond the edges of the electro-optic layer (112); and a protective layer (118) disposed on the opposed side of the electro-optic layer (112) from the backplane (102), a peripheral portion of the protective layer (118) extending beyond the edges of the electro-optic layer and being adhered (at 120) to the backplane (102).
Owner:E INK CORPORATION +1

Electro-optic displays, and color filters for use therein

A process for producing a color electro-optic display uses an electro-optic sub-assembly comprising an electro-optic layer and a light-transmissive electrically-conductive layer. This sub-assembly is laminated to a backplane comprising a plurality of electrodes with the electro-optic layer disposed between the backplane and the electrically-conductive layer. A flowable material is placed over the sub-assembly and a color filter array is placed over the electrically-conductive layer and aligned with the electrodes of the backplane to form the color electro-optic display.
Owner:E INK CORPORATION

Multi-layer light modulator

A light modulator comprises a plurality of discrete variable transmission electro-optic layers arranged so that light will pass successively through the plurality of layers; the light modulator has a higher transmission range than any of the individual electro-optic layers separately.
Owner:E INK CORPORATION

Polarization Independent Birefringent Tunable Filters

Novel, polarization-insensitive, birefringent, broadband tunable filter arrangements that allow high throughput, based on a combination of tunable birefringent layers or polarization dependent filters, in combination with one or more of the following components (i) thin film achromatic quarter waveplates based on the form birefringence of dielectric subwavelength grating structures, (ii) nano wire-grid polarizers made of metallic wire grids; (iii) omnidirectional dielectric mirrors, (iv) polarization conversion mirrors, (v) reflective polarized beam splitters for circularly polarized light, (vi) metallic subwavelength gratings with lines having Gaussian profile, and (vii) Faraday mirror. All of these components may be implemented in thin film form on one or more substrates, such that a compact and cost effective filter can be produced. The birefringent layers can be any birefringent or magneto-optic layer but especially liquid crystals. The use of novel polarization conversion disposition of the components of the filter results in a filter having high throughput.
Owner:BEN GURION UNIVERSITY OF THE NEGEV

Electro-optic array interface

InactiveUS20050248830A1Exquisite sensitivity of SPRCladded optical fibreNanoopticsAngle of incidenceRefractive index
A grating coupled surface plasmon resonance optical modulator is disclosed. A electro-optic polymer dielectric is deposited on the metallic surface of a diffraction grating to provide a metal / dielectric interface. A surface plasmon will propagate at the metal / dielectric interface in a resonant condition, e.g., when the metal surface is illuminated by transverse magnetic (TM) polarized light of the appropriate wavelength, angle of incidence and phase velocity. In the present invention, phase velocity is controlled by the diffraction grating. A transparent electrode deposited on the electro-optic layer allows an electrical potential to be applied across the electro-optic polymer. The applied electrical potential (voltage) changes the index of refraction of the electro-optic polymer, thereby disrupting the resonant condition to produce an optically detectable change in reflectance of incident light from the metal layer. The disclosed grating coupled surface plasmon resonance optical modulator may be configured as an electronically or optically addressable array.
Owner:CIENCIA

Electro-optic displays, and processes for the production thereof

A first apparatus for displaying a color image comprises an electro-optic display (1002) having a plurality of pixels, each of which can be independently set to a light-transmissive optical state or a substantially opaque optical state, and lighting means (1006) arranged to flash separate pulses of light of at least two differing colors on to one surface of the electro-optic display (1002). A second apparatus for generating pulses of light of differing colors comprising a light source and a filter assembly comprising first (1100) and second (1106) electro-optic layers each having a light-transmissive state and a colored state, the two colored states being different, and electrodes to switch these layers between these states.
Owner:E INK CORPORATION

Microsystem enabled photovoltaic modules and systems

A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC

Electro-optic array interface

A grating coupled surface plasmon resonance optical modulator is disclose. A electro-optic polymer dielectric is deposited on the metallic surface of a diffraction grating to provide a metal / dielectric interface. A surface plasmon will propagate at the metal / dielectric interface in a resonant condition, e.g., when the metal surface is illuminated by transverse magnetic (TM) polarized light of the appropriate wavelength, angle of incidence and phase velocity. In the present invention, phase velocity is controlled by the diffraction grating. A transparent electrode deposited on the electro-optic layer allows an electrical potential to be applied across the electro-optic polymer. The applied electrical potential (voltage) changes the index of refraction of the electro-optic polymer, thereby disrupting the resonant condition to produce an optically detectable change in reflectance of incident light from the metal layer. The disclosed grating coupled surface plasmon resonance optical modulator may be configured as an electronically or optically addressable array.
Owner:CIENCIA

Method for mechnical and electrical connection to display electrodes

An electro-optic display may comprise a front electrode having a first opening defined therein, a rear electrode having a second opening defined therein, an electro-optic layer between the front and rear electrodes and a rigid conductive component passing through the first and second openings and electrically contacting the front electrode but not the rear electrode.
Owner:E INK CORPORATION

Applications of electro-optic displays

Electro-optic, especially electrophoretic, displays are used in variety of architectural and furniture applications, including a tile (100) comprising an electro-optic layer (110) capable of changing the color of the file, front and multiple rear electrodes and a light-transmissive polymeric layer (102), the exposed surface of which is textured to provide a plurality of facets inclined to the plane of the tile (100), the rear electrodes being aligned with the facets. A variable color writable board is also provided.
Owner:E INK CORPORATION

Display device and electronic apparatus

A display device includes the following elements. A display has a display area and includes an electro-optic layer and a light-reflecting layer reflecting light emitted from the electro-optic layer to the viewing side of the display device, the light-reflecting layer being arranged in the display area. A plate-shaped exterior has a frame area including a portion located outside the periphery of the display. An antireflective plate continuously covers both of the display area and the frame area. The antireflective plate prevents external light, which enters the viewing side of the display device and is reflected by the light-reflecting layer or the frame area, from emerging on the viewing side.
Owner:SEIKO EPSON CORP

Electro-optic device and electronic instrument

An electro-optic device includes a plurality of pixel electrodes each formed for respective unit areas with a distance between one of the pixel electrodes and another of the pixel electrodes adjacent to the one of the pixel electrodes, the unit areas being arranged in a plane and defined by dividing the plane into the same shapes without a gap, and an electro-optic layer that faces each of the pixel electrodes, and in response to application of a first electric potential to each of the pixel electrodes, expresses a first grayscale in an area corresponding to each of the pixel electrodes, in response to application of a second electric potential different form the first electrical potential to each of the pixel electrodes, expresses a second grayscale different from the first grayscale in an area corresponding to each of the pixel electrodes, wherein the distance between one of the pixel electrodes and another of the pixel electrodes adjacent to the one of the pixel electrodes is selected so that a boundary between an area expressing the first grayscale in response to application of the first electric potential to the one of the pixel electrodes and an area expressing the second grayscale in response to application of the second electric potential to the another of the pixel electrodes adjacent to the one of the pixel electrodes is substantially identical to a boundary between the unit area provided with the one of the pixel electrodes and the unit area provided with the another of the pixel electrodes.
Owner:E INK CORPORATION

Electro-optic displays, and color filters for use therein

A process for producing a color electro-optic display uses an electro-optic sub-assembly comprising an electro-optic layer and a light-transmissive electrically-conductive layer. This sub-assembly is laminated to a backplane comprising a plurality of electrodes with the electro-optic layer disposed between the backplane and the electrically-conductive layer. A flowable material is placed over the sub-assembly and a color filter array is placed over the electrically-conductive layer and aligned with the electrodes of the backplane to form the color electro-optic display.
Owner:E INK CORPORATION

Implantable sensing arrangement and approach

Characteristics of biological substances, such as cerebral cortex matter, are sensed. According to an example embodiment, the present invention is directed to a negligibly-intrusive, multi-layer integrated circuit arrangement for monitoring activity of an area of a cerebral cortex that would normally be covered by an anatomical layer. The multi-layer integrated circuit arrangement includes an optics layer located outside the cerebral cortex area that includes an emitter and a detector. The optics layer is adapted for implantation in the anatomical layer and for sensing at least one brain-activity parameter. The multi-layered integrated circuit arrangement also includes a data-processing layer that includes a digital-processing circuit that is adapted for assimilating neural data in response to the optics layer sensing at least one brain-activity parameter.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products