Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1237 results about "Channel impulse response" patented technology

The channel impulse response will be found as the sum of the multiple paths as shown in (1). Since channel impulse response is assumed to be independent of the transmitted symbols, log f([X. In this case, the channel impulse response has a larger delay spread than a symbol period of the transmit signal.

Synchronization in a broadcast OFDM system using time division multiplexed pilots

In an OFDM system, a transmitter broadcasts a first TDM pilot on a first set of subbands followed by a second TDM pilot on a second set of subbands in each frame. The subbands in each set are selected from among N total subbands such that (1) an OFDM symbol for the first TDM pilot contains at least S1 identical pilot-1 sequences of length L1 and (2) an OFDM symbol for the second TDM pilot contains at least S2 identical pilot-2 sequences of length L2, where L2>L1, S1·L1=N, and S2·L2=N. The transmitter may also broadcast an FDM pilot. A receiver processes the first TDM pilot to obtain frame timing (e.g., by performing correlation between different pilot-1 sequences) and further processes the second TDM pilot to obtain symbol timing (e.g., by detecting for the start of a channel impulse response estimate derived from the second TDM pilot).
Owner:QUALCOMM INC

MIMO OFDM system

A MIMO OFDM system includes a plurality of space-time encoders for encoding respective data blocks with independent space-time codes. The transformed data block signals are transmitted by a plurality of transmit antennas and received by a plurality of receive antennas. The received data is pre-whitened prior to maximum likelihood detection. In one embodiment, successive interference cancellation can be used to improve system performance. Channel parameter estimation can be enhanced by weighting the channel impulse response estimates based upon a deviation from average.
Owner:AT&T INTPROP I L P

Closed loop feedback system for improved down link performance

ActiveUS20050157683A1Improve downlink performanceMinimize undesired effect of fadingPower managementSpatial transmit diversityChannel state informationChannel impulse response
A method includes receiving at least two space-time coded signals from an antenna system associated with a first station, determining complex channel state information based on the received space-time coded signals, and sending the complex channel state information to the first station. In an alternative embodiment, a method includes transmitting at least two space-time coded signals in respective beams of a multi-beam antenna array, measuring a channel impulse response for each space-time coded signal at a second station, and sending an indicia of a selected set of least attenuated signals from the second station to the first station. The multi-beam antenna array is associated with a first station. The beams transmit a signature code embedded in each respective space-time coded signal, and the signature codes are orthogonal so that the second station can separate and measure the channel impulse response corresponding to each space-time coded signal.
Owner:INTELLECTUAL VENTURES I LLC

Adaptive equalizer

A channel impulse response is determined from a cross-correlation of a received training sequence and a stored version of the transmitted training sequence. The channel impulse response is iteratively cleansed of noise caused by the finiteness of the cross-correlation. Initial values of the tap weights for the taps of an equalizer such as a decision feedback equalizer may be determined based on the cleansed channel impulse response.
Owner:ZENITH RADIO CORP

Whitening matched filter for use in a communications receiver

A novel and useful whitening matched filter (WMF) for use in a communications receiver. The WMF is constructed by cascading a matched filter and a noise-whitening filter. The response of the matched filter is derived from the time reversed complex conjugate of the channel impulse response. The whitening filter is derived by extracting the minimum phase portion of the mixed phase channel impulse response using homomorphic deconvolution. The whitening filter is implemented using either an FIR or IIR filter adapted to process the data received before and after the training sequence using a minimum phase system in a direction in time opposite to that of the direction of corresponding data sample processing performed by the equalizer.
Owner:COMSYS COMM & SIGNAL PROC

Method and apparatus for multicarrier channel estimation and synchronization using pilot sequences

Method and apparatus for OFDM synchronization and channel estimation. In a temporal embodiment, received embedded system pilot symbols are inverse Fourier transformed at expected index locations and correlated with computed complex conjugates of inverse Fourier transforms of pilot symbols for providing a correlation function for the channel impulse response. In a frequency domain embodiment, embedded system pilot symbols are augmented with pilot-spaced inferred guard band symbols, multiplied by scaled complex conjugates of computed pilot systems, and inverse Fourier transformed into the channel impulse response. Time and frequency are synchronized in feedback loops from information in the channel impulse response. The channel impulse response is filtered, interpolated, and then Fourier transformed for determining channel estimates for equalization.
Owner:RADIA COMM

Ofdm Channel Estimation and Tracking for Multiple Transmit Antennas

Multiple Transmit Multiple Receive Orthogonal Frequency Division Multiplexing (‘OFDM’) comprising generating bit streams and corresponding sets of N frequency domain carrier amplitudes ({tilde over (s)}(kN+j), 0≦j≦N−1) modulated as OFDM symbols subsequently to be transmitted from a transmitter, where k is the OFDM symbol number and j indicates the corresponding OFDM carrier number. Affix information is inserted at the transmitter into guard intervals between consecutive time domain OFDM symbols and are used at the receiver to estimate the Channel Impulse Response (Hlm) of the transmission channels, the estimated Channel Impulse Response (Ĥlm) being used to demodulate the bit streams in the signals received at the receiver. The affix information is known to the receiver, as well as to the transmitter, and is mathematically equivalent to a vector (cD) that is common to the time domain OFDM symbols multiplied by at least first weighting factors (αk) that are different for one time domain OFDM symbol (k) than for another and second weighting factors (wi(k)) that enable one of the transmit antenna means (i) to be distinguished from another.
Owner:MOTOROLA SOLUTIONS INC

Receiver

A receiver determines a symbol synch time for recovering data from a symbol of signal samples generated in accordance with Orthogonal Frequency Division Multiplexing. Each symbol includes a guard period which carries data repeated from a data bearing part of the symbol and pilot signal samples. The receiver comprises a pilot assisted tracker which is operable to determine an adjustment to the symbol synch time from a pilot assisted channel impulse response estimate, a guard adapted filter processor comprising a filter and a filter controller operable to adapt the impulse response of the filter to the signal samples from the guard period. The controller is operable to excite the filter with the symbol signal samples to generate an output signal which provides a further representation of the channel impulse response. A symbol time adjustment estimator is operable to adjust the symbol synch time in accordance with the adjustment provided by at least one of the pilot assisted tracker and the guard adapted filter processor. The receiver provides an improved estimate of the symbol synch time by combining a pilot assisted tracker with a guard adapted filter processor. The pilot assisted tracker estimates the symbol synch time from a channel impulse response estimate generated from pilot signal samples. By combining the synch time adjustment estimated from the pilot assisted channel impulse response, with the adjustment estimated by the guard adapted filter processor, an ambiguity in a relative time of arrival of signal paths of the channel impulse response with respect to the main signal path is obviated.
Owner:SONY UK LTD +1

Channel estimation method and apparatus determining a channel impulse response (CIR) distribution area using two adjacent windows

A channel estimation method and apparatus based on two adjacent windows. The channel estimation method includes scanning a signal containing noise and channel impulse response (CIR) information with a first window and a second window, detecting a CIR distribution area based on the ratio between the average power of the signal within the first window and the average power of the signal within the second window and at least one threshold value, eliminating the noise from the CIR distribution area and estimating the CIR information. Accordingly, noise interference can be minimized and accurate channel estimation can be accomplished.
Owner:SAMSUNG ELECTRONICS CO LTD

Adaptive channel estimation using decision feedback

A method and system thereof for determining feedback for iterative channel estimation based on the summation of soft output decisions or Bit Error Rate (BER) derived from the output of an equalizer. The channel impulse response initially obtained according to a training sequence is used to estimate the received signal, and output hard values. The BER of the training sequence is calculated and judged, and if the BER is too high, the channel is estimated again according to the feedback until the BER satisfies a predetermined value. If the BER is still unsatisfactory after a predetermined number of trials, the channel is assumed to be an authentic bad channel, thus terminating the feedback procedure. If the equalizer is capable of outputting soft output decision, the summation of soft outputs is used instead of BER to determine whether feedback is appropriate.
Owner:QISDA CORP

Adaptive transmit diversity with quadrant phase constraining feedback

A wireless communication system includes a transmitter and a receiver. The transmitter includes multiple groups of transmit antennas. Input symbols are generated and then orthogonal space-time block is encoded to produce a data stream for each group of transmit antennas. Each data stream is adaptively linear space encoded to produce an encoded signal for each transmit antenna of each group according to feedback information for the group. The receiver includes a single receive antenna, a module for measuring a phase of a channel impulse response for each transmit antenna. The feedback information is determined independently for each group of transmit antennas from the channel impulse responses. The feedback information for each group of transmit antennas is sent to the transmitter.
Owner:MITSUBISHI ELECTRIC RES LAB INC

Multi-cast communication system and method of estimating channel impulse responses therein

Multiple Steiner codes are transmitted as bursts (s11, S12, . . . S33, 560, 524) from multiple base stations (182, 184, 186) having one or more transmit elements (174, 176, 178, 180), with successive bursts providing an extended training sequence for use in channel estimation at an addressed unit (172), such as a mobile handset. Accurate channel estimation is possible through the use of Wiener frequency domain MMSE deconvolution (518) combined with frequency domain spatial decoupling matrices, with quasi-orthogonal pseudo-noise sequences (502, 504, 520, 522) allocated to base stations and their antenna elements. The use of Steiner codes to supplement Wiener frequency domain MMSE deconvolution and frequency domain spatial decoupling results in the possibility of allocating only a single training sequence to each base station provided that the training sequence is of sufficient length to encompass all multiple time-translated channel impulse responses (H).
Owner:MALIKIE INNOVATIONS LTD +1

Receiver

A receiver for recovering data from a symbol of signal samples generated in accordance with Orthogonal Frequency Division Multiplexing is described. The symbol may be a COFDM symbol in accordance with the DVB-T standard, and includes pilot carrier signals for use in estimating channel conditions. The receiver includes a pilot assisted channel estimator comprising a pilot extractor operable to extract the pilot carrier signals from the signal samples and to generate from the extracted pilots samples of the channel frequency response or channel transfer function estimate. The channel frequency response generator is operable to compare the extracted pilot carrier signals with a predetermined version of the pilot carrier signals. The pilot assisted channel estimator includes a frequency dimension interpolation filter operable to interpolate the pilot-derived samples of the channel frequency response in the frequency dimension, and a filter controller. The frequency response of the frequency interpolation filter has a pass bandwidth, which is adjustable, and the filter controller is operable to adjust the bandwidth of the frequency interpolation filter to the effect of reducing noise in the channel frequency response estimate. The use of an adjustable pass bandwidth for a frequency domain interpolation filter can advantageously be used to reduce noise in the channel impulse response estimate by enabling an appropriate selection of the bandwidth of the frequency domain interpolation filter according to the particular current characteristics of the channel impulse response.
Owner:REDWOOD TECHNOLOGIES LLC +1

Channel estimation for OFDM communication systems including IEEE 802.11A and extended rate systems

Channel estimation techniques are provided for a receiver of a wireless communication system using orthogonal frequency division multiplexing (OFDM), including legacy 802.11a and various extended rate systems. Training signals are received from one or more receive antennas. An estimated channel impulse response is computed from the received training signals by reference to a training sequence. The estimated channel impulse response is truncated in the time domain based on channel power and noise data. Channel response tracking techniques may also be implemented to correct for variations in channel response over the transmission time of a packet.
Owner:QUALCOMM INC

Method and apparatus for equalization and decoding in a wireless communications system including plural receiver antennae

Joint equalization and decoding techniques to eliminate the division operations in the Frequency domain Equalizer (FEQ) of an Orthogonal Frequency Division Modulation (OFDM) receiver by incorporating the magnitude of the channel impulse response estimates into the decision metrics in the decoder. This includes methods for both hard-decision symbol-by-symbol detection and soft-decision decoding using the Viterbi algorithm. Further, Channel State Information (CSI) is incorporated to improve the performance of the receiver. The disclosure also introduces a computationally efficient bit-by-bit piecewise approximation technique incorporating CSI to implement decoder decision metrics. Finally, an efficient implementation technique for multiple receiver antennae using Maximum Ratio Combining (MRC) and Viterbi decoding with CSI is disclosed.
Owner:MARVELL ASIA PTE LTD

Multiple-input multiple-output spatial multiplexing system with dynamic antenna beam combination selection capability

The present invention generally relates to the field of wireless communication systems. It particularly refers to a spatial diversity transmitter (110) and a spatial diversity receiver (120) in a wireless multiple-input multiple-output (MIMO) spatial multiplexing system as well as a corresponding method for wirelessly transmitting and receiving modulated RF signals via multiple wireless signal propagation paths (Pl) of a multipath fading channel in a way that correlation between the MEMO channel components are reduced and / or the signal to interference plus noise ratio (SINR) is increased which hence result in an improved bit error rate (BER) or packet error rate (PER) performance of said wireless MIMO spatial multiplexing system. On the receiver side, for example, this is achieved by controlling at least one antenna switching and / or combining means (121a′+b′) to select a specific combination of different fixed beam antennas (121a+b) from each receiver-resident antenna array. According to the invention, said selection is based on estimated values of the channel impulse responses (hl(τl, t)) for said signal propagation paths (Pl). An antenna beam selection control means (129) is configured for selecting a specific antenna beam combination so as to maximize the average signal-to-interference-plus-noise ratios ( γl) of RF signals (rl(τl, t, φl)) received via said multiple wireless signal propagation paths (Pl) and / or to minimize the correlation coefficients (ρr<sub2>l1< / sub2>r<sub2>l2< / sub2>(t)) indicating the correlations of different pairs of these RF signals (rl1(τl1, t, φl1) and rl2(τl2, t, φl2)).Thereby, each fixed beam antenna (121a+b) of the receiver-resident antenna arrays has a distinct radiation pattern with a different beam center and / or beam width in the azimuth and / or elevation plane, wherein a superposition of all these radiation patterns may cover all possible azimuthal (φ) and / or elevational angles of arrival (θ) of an RF signal (s(t)).For compensating detected multipath fades in the channel amplitude response (|Hl(f, t)|) of at least one signal propagation path (Pl) between the spatial diversity transmitter (110) and the spatial diversity receiver (120), a receiver-resident channel estimation and / or equalization circuitry (124, 128) is applied.
Owner:SONY DEUT GMBH

Methods of and systems for continually measuring the range between mobile underwater vehicles carrying acoustical signal transmitters and remotely deployed synchronized underwater acoustical receivers provided with signal processing for continually determining such range during the underwater moving of the vehicle, and for measuring acoustic underwater transmission loss, geoacoustical properties and for other purposes

Invention relates to a novel method of and system for ranging between an acoustic source carried on an unmanned or autonomous undersea mobile vehicle (UUV or AUV) and preferably a plurality of hydrophone receivers remotely deployed from the vehicle in predetermined patterns, generally suspended from sonobuoys equipped with above-the-sea relay radio transmitting antennas, and with time synchronization provided amongst the source and the receivers, wherein the time delay from the transmissions of the source is measured by utilizing special signal processing, enabling range to be measured in close to real time by determining the product of the sound velocity and the measured time delay, and with the process continually and periodically being repeated throughout the duration of the vehicle run. Given the range, the system may then be used to measure the acoustical properties of and / or receiver system performance in the sea or other water body, such as transmission or propagation loss TL, channel impulse response, bottom geoacoustic properties, source level, receiver sensitivity calibration, sonar operator readiness and sonar receiver performance and the like. Further, in situ measured data can be assimilated with models to enable more accurate prediction of the ocean environment than could be obtained from either individually.
Owner:OCEAN ACOUSTICAL SERVICES ADN INSTR SYST OASIS INC

Channel equalizer and method of processing broadcast signal in DTV receiving system

A channel equalizer includes a first transformer, an estimator, an average calculator, a second transformer, a coefficient calculator, a compensator, and a third transformer. The first transformer converts normal data into frequency domain data, where a known data sequence is periodically repeated in the normal data. The estimator estimates channel impulse responses (CIR) during known data intervals adjacent to each normal data block. The average calculator calculates an average value of the CIRs. The second transformer converts the average value into frequency domain data. The coefficient calculator calculates equalization coefficients using the average value, and the compensator compensates channel distortion of each normal data block using the coefficients. The third transformer converts the compensated data block into time domain data.
Owner:LG ELECTRONICS INC

Tap weight initializer for an adaptive equalizer

Initial values of the tap weights for the taps of a linear equalizer are determined based on a channel impulse response of a channel so that the values corresponding to the weights of the equalizer taps achieve optimum initialization of the equalizer. These values are determined through use of a nested summation where the number of summations is dependent upon the number of multi-paths characterizing the channel.
Owner:ZENITH RADIO CORP

Synchronization and channel response estimation method suitable for OFDM system

The invention relates to a synchronization and channel response estimation method which is applicable to an OFDM system, the technical proposal is as follows: a maximum likelihood criterion ML-based cost function for the symbol timing synchronization, the carrier frequency synchronization and the channel parameter joint estimation is proposed by using an OFDM system model under a frequency selective fading channel and against the requirements on the accuracy of the transmission of high-quality information of the next generation of wireless communication system and the existing OFDM wireless communication system. A system architecture and a strategy of joint estimation symbols of timing offset Theta, carrier frequency offset Epsilon and channel impulse response h are derived from the cost function. The method comprises the following steps of carrying out the coarse synchronization and the channel response estimation and carrying out the fine synchronization and the calculation of a channel estimated value. The method can realize the balance between the calculation precision and the calculation complexity, increase or reduce the times of the iteration of the fine synchronization according to an actual system, reduce the interference during the wireless transmission, further improve the reliability of the system and improve the availability of the system.
Owner:BEIJING JIAOTONG UNIV

System and Method for Time-Domain Equalization in Discrete Multi-tone Systems

A novel time-domain equalizer (TEQ) is provided for the receiver of a Discrete Multi-tone (DMT) system to shorten the length of the effective channel impulse response. The TEQ is based on a variant of the conventional decision-feedback equalizer (DFE) structure along with a training method for the TEQ settings. By using this DFE-based TEQ for DMT systems, the data symbols transmitted through the effective shortened channel would be more reliable.
Owner:PROSCEND COMM

Mixed waveform configuration for wireless communications

A mixed waveform configuration for wireless communications including a first portion that is modulated according to a single-carrier modulation scheme and a second portion that is modulated according to a multi-carrier modulation scheme. The waveform is specified so that a channel impulse response (CIR) estimate obtainable from the first portion is reusable for acquisition of the second portion. The first portion includes a preamble and header and the second portion typically incorporates the payload.
Owner:INTELLECTUAL VENTURES I LLC

Transmitting and receiving apparatus and method in an Orthogonal Frequency Division Multiplexing system using an insufficient cyclic prefix

A preprocessing apparatus and method for a transmitter and a receiver to prevent system performance degradation caused by Inter-Channel Interference (ICI) or inter-symbol interference (ISI) in an OFDM system. In the OFDM system using N carriers having different frequency bands and K carriers of the N carriers designated as redundant carriers, the transmitter renders ICI-causing parts to be zeroes in a data frame, when a cyclic prefix is not longer than a channel impulse response. Therefore, the ICI is prevented. The receiver eliminates the ISI involved in a current frame using an interference estimated from a previous data frame. Therefore, noise spread caused by the use of redundant carriers is prevented and system complexity is remarkably reduced.
Owner:SAMSUNG ELECTRONICS CO LTD

Fast computation of coefficients for a variable delay decision feedback equalizer

Optimal Decision Feedback Equalizer (DFE) coefficients are determined from a channel estimate by casting the DFE coefficient problem as a standard recursive least squares (RLS) problem and solving the RLS problem. In one embodiment, a fast recursive method, e.g., fast transversal filter (FTF) technique, is used to compute the Kalman gain of the RLS problem, which is then directly used to compute MIMO Feed Forward Equalizer (FFE) coefficients. The FBE coefficients are computed by convolving the FFE coefficients with the channel impulse response. Complexity of a conventional FTF algorithm may be reduced to one third of its original complexity by selecting a DFE delay to force the FTF algorithm to use a lower triangular matrix. The length of the DFE may be selected to minimize the tap energy in the FBE coefficients or to ensure that the tap energy in the FBE coefficients meets a threshold.
Owner:AVAGO TECH INT SALES PTE LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products