Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1235 results about "Channel impulse response" patented technology

The channel impulse response will be found as the sum of the multiple paths as shown in (1). Since channel impulse response is assumed to be independent of the transmitted symbols, log f([X. In this case, the channel impulse response has a larger delay spread than a symbol period of the transmit signal.

Synchronization in a broadcast OFDM system using time division multiplexed pilots

In an OFDM system, a transmitter broadcasts a first TDM pilot on a first set of subbands followed by a second TDM pilot on a second set of subbands in each frame. The subbands in each set are selected from among N total subbands such that (1) an OFDM symbol for the first TDM pilot contains at least S1 identical pilot-1 sequences of length L1 and (2) an OFDM symbol for the second TDM pilot contains at least S2 identical pilot-2 sequences of length L2, where L2>L1, S1·L1=N, and S2·L2=N. The transmitter may also broadcast an FDM pilot. A receiver processes the first TDM pilot to obtain frame timing (e.g., by performing correlation between different pilot-1 sequences) and further processes the second TDM pilot to obtain symbol timing (e.g., by detecting for the start of a channel impulse response estimate derived from the second TDM pilot).
Owner:QUALCOMM INC

Closed loop feedback system for improved down link performance

ActiveUS20050157683A1Improve downlink performanceMinimize undesired effect of fadingPower managementSpatial transmit diversityChannel state informationChannel impulse response
A method includes receiving at least two space-time coded signals from an antenna system associated with a first station, determining complex channel state information based on the received space-time coded signals, and sending the complex channel state information to the first station. In an alternative embodiment, a method includes transmitting at least two space-time coded signals in respective beams of a multi-beam antenna array, measuring a channel impulse response for each space-time coded signal at a second station, and sending an indicia of a selected set of least attenuated signals from the second station to the first station. The multi-beam antenna array is associated with a first station. The beams transmit a signature code embedded in each respective space-time coded signal, and the signature codes are orthogonal so that the second station can separate and measure the channel impulse response corresponding to each space-time coded signal.
Owner:INTELLECTUAL VENTURES I LLC

Whitening matched filter for use in a communications receiver

A novel and useful whitening matched filter (WMF) for use in a communications receiver. The WMF is constructed by cascading a matched filter and a noise-whitening filter. The response of the matched filter is derived from the time reversed complex conjugate of the channel impulse response. The whitening filter is derived by extracting the minimum phase portion of the mixed phase channel impulse response using homomorphic deconvolution. The whitening filter is implemented using either an FIR or IIR filter adapted to process the data received before and after the training sequence using a minimum phase system in a direction in time opposite to that of the direction of corresponding data sample processing performed by the equalizer.
Owner:COMSYS COMM & SIGNAL PROC

Receiver

A receiver determines a symbol synch time for recovering data from a symbol of signal samples generated in accordance with Orthogonal Frequency Division Multiplexing. Each symbol includes a guard period which carries data repeated from a data bearing part of the symbol and pilot signal samples. The receiver comprises a pilot assisted tracker which is operable to determine an adjustment to the symbol synch time from a pilot assisted channel impulse response estimate, a guard adapted filter processor comprising a filter and a filter controller operable to adapt the impulse response of the filter to the signal samples from the guard period. The controller is operable to excite the filter with the symbol signal samples to generate an output signal which provides a further representation of the channel impulse response. A symbol time adjustment estimator is operable to adjust the symbol synch time in accordance with the adjustment provided by at least one of the pilot assisted tracker and the guard adapted filter processor. The receiver provides an improved estimate of the symbol synch time by combining a pilot assisted tracker with a guard adapted filter processor. The pilot assisted tracker estimates the symbol synch time from a channel impulse response estimate generated from pilot signal samples. By combining the synch time adjustment estimated from the pilot assisted channel impulse response, with the adjustment estimated by the guard adapted filter processor, an ambiguity in a relative time of arrival of signal paths of the channel impulse response with respect to the main signal path is obviated.
Owner:SONY UK LTD +1

Receiver

A receiver for recovering data from a symbol of signal samples generated in accordance with Orthogonal Frequency Division Multiplexing is described. The symbol may be a COFDM symbol in accordance with the DVB-T standard, and includes pilot carrier signals for use in estimating channel conditions. The receiver includes a pilot assisted channel estimator comprising a pilot extractor operable to extract the pilot carrier signals from the signal samples and to generate from the extracted pilots samples of the channel frequency response or channel transfer function estimate. The channel frequency response generator is operable to compare the extracted pilot carrier signals with a predetermined version of the pilot carrier signals. The pilot assisted channel estimator includes a frequency dimension interpolation filter operable to interpolate the pilot-derived samples of the channel frequency response in the frequency dimension, and a filter controller. The frequency response of the frequency interpolation filter has a pass bandwidth, which is adjustable, and the filter controller is operable to adjust the bandwidth of the frequency interpolation filter to the effect of reducing noise in the channel frequency response estimate. The use of an adjustable pass bandwidth for a frequency domain interpolation filter can advantageously be used to reduce noise in the channel impulse response estimate by enabling an appropriate selection of the bandwidth of the frequency domain interpolation filter according to the particular current characteristics of the channel impulse response.
Owner:REDWOOD TECHNOLOGIES LLC +1

Multiple-input multiple-output spatial multiplexing system with dynamic antenna beam combination selection capability

The present invention generally relates to the field of wireless communication systems. It particularly refers to a spatial diversity transmitter (110) and a spatial diversity receiver (120) in a wireless multiple-input multiple-output (MIMO) spatial multiplexing system as well as a corresponding method for wirelessly transmitting and receiving modulated RF signals via multiple wireless signal propagation paths (Pl) of a multipath fading channel in a way that correlation between the MEMO channel components are reduced and/or the signal to interference plus noise ratio (SINR) is increased which hence result in an improved bit error rate (BER) or packet error rate (PER) performance of said wireless MIMO spatial multiplexing system. On the receiver side, for example, this is achieved by controlling at least one antenna switching and/or combining means (121a′+b′) to select a specific combination of different fixed beam antennas (121a+b) from each receiver-resident antenna array. According to the invention, said selection is based on estimated values of the channel impulse responses (hll, t)) for said signal propagation paths (Pl). An antenna beam selection control means (129) is configured for selecting a specific antenna beam combination so as to maximize the average signal-to-interference-plus-noise ratios ( γl) of RF signals (rll, t, φl)) received via said multiple wireless signal propagation paths (Pl) and/or to minimize the correlation coefficients (ρr<sub2>l1</sub2>r<sub2>l2</sub2>(t)) indicating the correlations of different pairs of these RF signals (rl1l1, t, φl1) and rl2l2, t, φl2)).
Thereby, each fixed beam antenna (121a+b) of the receiver-resident antenna arrays has a distinct radiation pattern with a different beam center and/or beam width in the azimuth and/or elevation plane, wherein a superposition of all these radiation patterns may cover all possible azimuthal (φ) and/or elevational angles of arrival (θ) of an RF signal (s(t)).
For compensating detected multipath fades in the channel amplitude response (|Hl(f, t)|) of at least one signal propagation path (Pl) between the spatial diversity transmitter (110) and the spatial diversity receiver (120), a receiver-resident channel estimation and/or equalization circuitry (124, 128) is applied.
Owner:SONY DEUT GMBH

Methods of and systems for continually measuring the range between mobile underwater vehicles carrying acoustical signal transmitters and remotely deployed synchronized underwater acoustical receivers provided with signal processing for continually determining such range during the underwater moving of the vehicle, and for measuring acoustic underwater transmission loss, geoacoustical properties and for other purposes

Invention relates to a novel method of and system for ranging between an acoustic source carried on an unmanned or autonomous undersea mobile vehicle (UUV or AUV) and preferably a plurality of hydrophone receivers remotely deployed from the vehicle in predetermined patterns, generally suspended from sonobuoys equipped with above-the-sea relay radio transmitting antennas, and with time synchronization provided amongst the source and the receivers, wherein the time delay from the transmissions of the source is measured by utilizing special signal processing, enabling range to be measured in close to real time by determining the product of the sound velocity and the measured time delay, and with the process continually and periodically being repeated throughout the duration of the vehicle run. Given the range, the system may then be used to measure the acoustical properties of and / or receiver system performance in the sea or other water body, such as transmission or propagation loss TL, channel impulse response, bottom geoacoustic properties, source level, receiver sensitivity calibration, sonar operator readiness and sonar receiver performance and the like. Further, in situ measured data can be assimilated with models to enable more accurate prediction of the ocean environment than could be obtained from either individually.
Owner:OCEAN ACOUSTICAL SERVICES ADN INSTR SYST OASIS INC

Synchronization and channel response estimation method suitable for OFDM system

The invention relates to a synchronization and channel response estimation method which is applicable to an OFDM system, the technical proposal is as follows: a maximum likelihood criterion ML-based cost function for the symbol timing synchronization, the carrier frequency synchronization and the channel parameter joint estimation is proposed by using an OFDM system model under a frequency selective fading channel and against the requirements on the accuracy of the transmission of high-quality information of the next generation of wireless communication system and the existing OFDM wireless communication system. A system architecture and a strategy of joint estimation symbols of timing offset Theta, carrier frequency offset Epsilon and channel impulse response h are derived from the cost function. The method comprises the following steps of carrying out the coarse synchronization and the channel response estimation and carrying out the fine synchronization and the calculation of a channel estimated value. The method can realize the balance between the calculation precision and the calculation complexity, increase or reduce the times of the iteration of the fine synchronization according to an actual system, reduce the interference during the wireless transmission, further improve the reliability of the system and improve the availability of the system.
Owner:BEIJING JIAOTONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products