A dual-
clutch transmission with two clutches (K1, K2) whose input sides are connected to a drive input shaft (w_an) and whose output sides are respectively connected to one of two transmission input shafts (w_K1, w_K2) arranged coaxially with one another. Idler gearwheels (01, 02, 03, 04, 05, 06) are mounted to rotate on at least two countershafts (w_vorgelege1, w_vorgelege2) while fixed gearwheels (09, 10, 11) are rotationally fixedly connected on the two transmission input shafts (w_K1, w_K2). A plurality of
coupling devices (A-B, C, D-E, D, E-F, F) connect the idler gearwheels (01, 02, 03, 04, 05, 06) of the two countershafts (w_vorgelege1, w_vorgelege2) with a respective drive output gearwheel (07, 08) fixed on each of the two countershafts (w_vorgelege1, w_vorgelege2). At least one shifting element (G) couples the two transmission input shafts (w_K1, w_K2) such that at least six shift-under-load forward gears (1, 2, 3, 4, 5, 6) and at least one reverse gear (RA1, R1) can be engaged. The transmission has three wheel planes (01-04; 02-05; 03-06) or four wheel planes (01-04, 01-09; 02-05, 02-04; 03-11, 03-05; 12-06) arranged in such manner that at least one shift-under-load winding gear can be engaged by the shifting element (G).