Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

66 results about "Significand" patented technology

The significand (also mantissa or coefficient, sometimes also argument or fraction) is part of a number in scientific notation or a floating-point number, consisting of its significant digits. Depending on the interpretation of the exponent, the significand may represent an integer or a fraction. The word mantissa seems to have been introduced by Arthur Burks in 1946 writing for the Institute for Advanced Study at Princeton, although this use of the word is discouraged by the IEEE floating-point standard committee as well as some professionals such as the creator of the standard, William Kahan, and also the prominent computer programmer and author of The Art of Computer Programming, Donald E. Knuth.

Apparatus and method for performing floating point addition

An apparatus and method are provided for performing an addition operation on operands A and B in order to produce a result R, the operands A and B and the result R being floating point values each having a significand and an exponent. The apparatus comprises prediction circuitry for generating a shift indication based on a prediction of the number of leading zeros that would be present in an output produced by subjecting the operands A and B to an unlike signed addition. Further, result pre-normalization circuitry performs a shift operation on the significands of both operand A and operand B prior to addition of the significands, this serving to discard a number of most significant bits of the significands of both operands as determined by the shift indication in order to produce modified significands for operands A and B. Operand analysis circuitry detects, with reference to the exponents of operands A and B, the presence of a leading bit cancellation condition, and addition circuitry is configured, in the presence of the leading bit cancellation condition, to perform an addition of the modified significands for operands A and B, in order to produce the significand of the result R. Such an approach provides a particularly simple and efficient apparatus for performing addition operations.
Owner:ARM LTD

Convert significand of decimal floating point data from packed decimal format

A decimal floating point finite number in a decimal floating point format is composed from the number in a different format. A decimal floating point format includes fields to hold information relating to the sign, exponent and significand of the decimal floating point finite number. Other decimal floating point data, including infinities and NaNs (not a number), are also composed. Decimal floating point data are also decomposed from the decimal floating point format to a different format. For composition and decomposition, one or more instructions may be employed, including one or more convert instructions.
Owner:IBM CORP

Dynamic Range Adjusting Floating Point Execution Unit

A floating point execution unit is capable of selectively repurposing a subset of the significand bits in a floating point value for use as additional exponent bits to dynamically provide an extended range for floating point calculations. A significand field of a floating point operand may be considered to include first and second portions, with the first portion capable of being concatenated with the second portion to represent the significand for a floating point value, or, to provide an extended range, being concatenated with the exponent field of the floating point operand to represent the exponent for a floating point value.
Owner:IBM CORP

Insert/extract biased exponent of decimal floating point data

A decimal floating point finite number in a decimal floating point format is composed from the number in a different format. A decimal floating point format includes fields to hold information relating to the sign, exponent and significand of the decimal floating point finite number. Other decimal floating point data, including infinities and NaNs (not a number), are also composed. Decimal floating point data are also decomposed from the decimal floating point format to a different format. For composition and decomposition, one or more instructions may be employed, including an insert biased exponent or extract biased exponent instruction.
Owner:IBM CORP

Extract biased exponent of decimal floating point data

ActiveUS20080270509A1Digital computer detailsProgram controlParallel computingSialic acid synthase
A decimal floating point finite number in a decimal floating point format is composed from the number in a different format. A decimal floating point format includes fields to hold information relating to the sign, exponent and significand of the decimal floating point finite number. Other decimal floating point data, including infinities and NaNs (not a number), are also composed. Decimal floating point data are also decomposed from the decimal floating point format to a different format. For composition and decomposition, one or more instructions may be employed, including an insert biased exponent or extract biased exponent instruction.
Owner:IBM CORP

Method for setting a bit associated with each component of packed floating-pint operand that is normalized in SIMD operations

A method is provided for loading a packed floating-point operand into a register file entry having one or more associated implicit bits. The packed floating point operand includes multiple component operands. Significand and exponent bits for each component operand are copied to corresponding fields of the register entry, and the exponent bits are tested to determine whether the component operand is normalized. An implicit bit corresponding to the component operand is set when the component operand is normalized.
Owner:INTEL CORP

Data processing apparatus and method for performing floating point addition

A data processing apparatus and method are provided for adding n-bit significands of first and second floating point operands to produce an n-bit result. The data processing apparatus comprises determination logic operable to determine the larger operand of the first and second operands, and alignment logic operable to align the n-bit significand of the smaller operand with the n-bit significand of the larger operand. First adder logic is then operable to perform a first sum operation in order to generate a first rounded result in non-redundant form equivalent to the addition of the aligned significands with a rounding increment injected at a first predetermined rounding position appropriate for a non-overflow condition, the first adder logic comprising a single level of adder logic. Further, second adder logic is provided to perform a second sum operation in order to generate a second rounded result in non-redundant form equivalent to the addition of the aligned significands with a rounding increment injected at a second predetermined rounding position appropriate for an overflow condition, the second adder logic also comprising a single level of adder logic. Selector logic is then used to derive the n-bit result from either the first rounded result or the second rounded result.
Owner:ARM LTD

Decomposition of decimal floating point data, and methods therefor

A decimal floating point finite number in a decimal floating point format is composed from the number in a different format. A decimal floating point format includes fields to hold information relating to the sign, exponent and significand of the decimal floating point finite number. Other decimal floating point data, including infinities and NaNs (not a number), are also composed. Decimal floating point data are also decomposed from the decimal floating point format to a different format.
Owner:IBM CORP

Decimal Floating-Point Adder with Leading Zero Anticipation

A decimal floating-point (DFP) adder includes a decimal leading-zero anticipator (LZA). The DFP adder receives DFP operands. Each operand includes a significand, an exponent, a sign bit and a leading zero count for the significand. The DFP adder adds or subtracts the DFP operands to obtain a DFP result. The LZA determines the leading zero count associated with the significand of the DFP result. The LZA operates at least partially in parallel with circuitry (in the DFP adder) that computes the DFP result. The LZA does not wait for that circuitry to finish computation of the DFP result. Instead it “anticipates” the number of leading zeros that the result's significand will contain.
Owner:ADVANCED MICRO DEVICES INC

Decomposition of decimal floating point data

A decimal floating point finite number in a decimal floating point format is composed from the number in a different format. A decimal floating point format includes fields to hold information relating to the sign, exponent and significand of the decimal floating point finite number. Other decimal floating point data, including infinities and NaNs (not a number), are also composed. Decimal floating point data are also decomposed from the decimal floating point format to a different format.
Owner:IBM CORP

Decimal floating-pointing quantum exception detection

A system and method for detecting decimal floating point data processing exceptions. A processor accepts at least one decimal floating point operand and performs a decimal floating point operation on the at least one decimal floating point operand to produce a decimal floating point result. A determination is made as to whether the decimal floating point result fails to maintain a preferred quantum. The preferred quantum indicates a value represented by a least significant digit of a significand of the decimal floating point result. An output is provided, in response to the determining that the decimal floating point result fails to maintain the preferred quantum, indicating an occurrence of a quantum exception. A maskable exception can be generated that is immediately trapped or later detected to control conditional processing.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products