Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

409 results about "Minimally invasive procedures" patented technology

Anastomosis apparatus for use in intraluminally directed vascular anastomosis

The present invention relates to new and useful apparatus for use with an intraluminally directed anvil apparatus for intraluminally directed vascular anastomosis of an end of a graft vessel to the wall of a receiving blood vessel that is performed according to a minimally invasive procedure. The intraluminally directed vascular anastomosis does not require the interruption of blood flow in the receiving blood vessel and it is versatile enough to suitably combine a variety of cutting, welding, soldering, sealing, and joining techniques such as stapling. The intraluminally directed anvil apparatus comprises an anvil and a wire used for signaling the optimal anastomosis site; this signaling can be performed when the initial exploration is performed. The intraluminally directed anvil apparatus is typically used with a catheter.
Owner:VITAL ACCESS CORP

Robot for surgical applications

The present invention provides a micro-robot for use inside the body during minimally-invasive surgery. The micro-robot includes an imaging devices, a manipulator, and in some embodiments a sensor.
Owner:BOARD OF RGT UNIV OF NEBRASKA

Tissue closure device and method of deliver and uses thereof

The present invention relates generally to a tissue closure device and in particular to a tissue closure device having a plurality of configurations providing for delivery and use in minimally invasive procedures. A tissue closure device (100) is provided from shape memory or super-elastic materials for closing a tissue site opening (50), the device comprising a plurality of tissue anchors (130) extending from a closed loop surface (110) wherein the plane of said tissue anchors is provided at an angle essentially perpendicular with respect to the plane of said closed loop surface; a. wherein said plurality of tissue anchors (130) comprise a proximal end (130p) and a distal end (130d); said distal end provided for anchoring said device onto tissue (50); and wherein said proximal end (130p) is fluid with and extends from said closed loop surface (110); and b. said closed loop surface (110) having a plurality of configurations including: a delivery configuration (1OOd), an open configuration (1000) and a closed configuration (100c) wherein said closed loop surface (110) may undergo a transformation between one of said plurality of configurations to another; said delivery configuration (1OOd) defining a low profile of said device (100) and adapted for delivery to a tissue site (50) through a small profile access point having a first diameter and wherein said closure device is utilized to close a tissue site having a second diameter such that said second diameter is larger than said first diameter.
Owner:NOVOGATE MEDICAL

Device to permit offpump beating heart coronary bypass surgery

A heart retractor links lifting of the heart and regional immobilization which stops one part of the heart from moving to allow expeditious suturing while permitting other parts of the heart to continue to function whereby coronary surgery can be performed on a beating heart while maintaining cardiac output unabated and uninterrupted. Circumflex coronary artery surgery can be performed using the heart retractor of the present invention. The retractor includes a plurality of flexible arms and a plurality of rigid arms as well as a surgery target immobilizing element. One form of the retractor can be used in minimally invasive surgery, while other forms of the retractor can accommodate variations in heart size and paracardial spacing.
Owner:MAQUET CARDIOVASCULAR LLC

Device for the implantation and fixation of prosthetic valves

A device for the transvascular implantation and fixation of prosthetic heart valves having a self-expanding heart valve stent (10) with a prosthetic heart valve (11) at its proximal end is introducible into a patient's main artery. With the objective of optimizing such a device to the extent that the prosthetic heart valve (11) can be implanted into a patient in a minimally-invasive procedure, to ensure optimal positioning accuracy of the prosthesis (11) in the patient's ventricle, the device includes a self-expanding positioning stent (20) introducible into an aortic valve positioned within a patient. The positioning stent is configured separately from the heart valve stent (10) so that the two stents respectively interact in their expanded states such that the heart valve stent (10) is held by the positioning stent (20) in a position in the patient's aorta relative the heart valve predefinable by the positioning stent (20).
Owner:JENAVALVE TECH INC

Interspinous distraction devices and associated methods of insertion

In various embodiments, the present invention provides a plurality of novel interspinous distraction devices and associated methods of insertion. The interspinous distraction devices of the present invention are designed and configured to effectively treat such conditions as lumbar spinal stenosis and degenerative disc disease. Advantageously, the interspinous distraction devices of the present invention may be inserted through conventional open procedures, typically requiring a relatively large incision and a general anesthetic, or through novel minimally-invasive procedures, typically requiring only a local anesthetic. These novel minimally-invasive procedures and related enabling devices are also disclosed and described herein.
Owner:ZIMMER BIOMET SPINE INC

Methods and devices for performing cardiac valve repair

The present invention is directed to methods and devices for repairing a cardiac valve. Generally, the methods involve a minimally invasive procedure that includes creating an access in the apex region of the heart through which one or more instruments may be inserted so as to repair a cardiac valve, for instance, a mitral or tricuspid valve. Accordingly, the methods are useful for performing a variety of procedures to effectuate a repair. For instance, in one embodiment, the methods are useful for repairing a cardiac valve by implanting one or more artificial heart valve chordae tendinae into one or more cardiac valve leaflet tissues so as to restore the proper leaflet function and thereby prevent reperfusion. In another embodiment, the methods are useful for repairing a cardiac valve by resecting a portion of one or more cardiac valve leaflets and implanting one or more sutures into the resected valve tissues, which may also include the implantation of an annuloplasty ring. In an additional embodiment, the methods are useful for performing an edge to edge bow-tie repair (e.g., an Alfieri repair) on cardiac valve tissues. Devices for performing the methods of the invention are also provided.
Owner:UNIV OF MARYLAND BALTIMORE

Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen

A system for implanting a surgical device to control the circumference of internal anatomic passages corrects physiologic dysfunctions resulting from a structural lumen which is either too large or too small. Implants are disclosed which employ various means for adjusting and maintaining the size of an orifice to which they are attached. Systems permit the implants to be implanted using minimally invasive procedures and permit final adjustments to the circumference of the implants after the resumption of normal flow of anatomic fluids in situ. Methods are disclosed for using the implants to treat heart valve abnormalities, gastroesophageal abnormalities, anal incontinence, and the like.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC

Tissue cutting device

Devices for efficient severing or cutting of a material or substance such as soft tissue suitable for use in open surgical and / or minimally invasive procedures are disclosed. A cutting assembly generally includes a first and second cutting blades each having an inner surface and at least one set of cutting teeth, the first inner surface being in contact with the second inner surface so that the sets of cutting teeth of the first and second cutting blades are aligned with and configured to cooperate with each other when at least one of the cutting blades moves, e.g., rotates and / or oscillates, relative to the other. A tissue cutting device generally includes a probe and the cutting assembly configured to be in a storage configuration or in a cutting configuration. The cutting assembly may provide a coagulation mechanism.
Owner:ACUEITY HEALTHCARE

Instruments and methods for reduction of vertebral bodies

A spinal stabilization system may be formed in a patient. In some embodiments, a minimally invasive procedure may be used to form a spinal stabilization system in a patient. Bone fastener assemblies may be coupled to vertebrae. Each bone fastener assembly may include a bone fastener and a collar. The collar may be rotated and / or angulated relative to the bone fastener. Extenders may be coupled to the collar to allow for formation of the spinal stabilization system through a small skin incision. The extenders may allow for alignment of the collars to facilitate insertion of an elongated member in the collars. An elongated member may be positioned in the collars and a closure member may be used to secure the elongated member to the collars. A reducer may be used to achieve reduction of one or more vertebral bodies coupled to a spinal stabilization system.
Owner:ZIMMER BIOMET SPINE INC

Spinal stabilization systems and methods

A spinal stabilization system may be formed in a patient. In some embodiments, a minimally invasive procedure may be used to form a spinal stabilization system in a patient. Bone fastener assemblies may be coupled to vertebrae. Each bone fastener assembly may include a bone fastener and a collar. The collar may be rotated and / or angulated relative to the bone fastener. Detachable members may be coupled to the collar to allow for formation of the spinal stabilization system through a small skin incision. The detachable members may allow for alignment of the collars to facilitate insertion of an elongated member in the collars. An elongated member may be positioned in the collars and a closure member may be used to secure the elongated member to the collars.
Owner:ZIMMER BIOMET SPINE INC

Implantable devices for controlling the size and shape of an anatomical structure or lumen

An implantable device system for controlling the dimensions of internal anatomic passages corrects physiologic dysfunctions resulting from a structural lumen which is either too large or too small. Implantable devices are disclosed which employ various mechanisms for adjusting and maintaining the size of an orifice to which they are attached. Systems permit the implants to be implanted using minimally invasive procedures and permit final adjustments to the dimensions of the implants after the resumption of normal flow of anatomic fluids in situ.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC

Instruments and methods for reduction of vertebral bodies

A spinal stabilization system may be formed in a patient. In some embodiments, a minimally invasive procedure may be used to form a spinal stabilization system in a patient. Bone fastener assemblies may be coupled to vertebrae. Each bone fastener assembly may include a bone fastener and a collar. The collar may be rotated and / or angulated relative to the bone fastener. Extenders may be coupled to the collar to allow for formation of the spinal stabilization system through a small skin incision. The extenders may allow for alignment of the collars to facilitate insertion of an elongated member in the collars. An elongated member may be positioned in the collars and a closure member may be used to secure the elongated member to the collars. A reducer may be used to achieve reduction of one or more vertebral bodies coupled to a spinal stabilization system.
Owner:ZIMMER SPINE INC

Bendable needle for delivering bone graft material and method of use

A bone graft needle, particularly useful in minimally invasive procedures, is provided. The bone graft needle as well as its corresponding penetrating member may be made from bendable materials so that the combined instrument can more easily access hard to reach areas of the body.
Owner:WRIGHT MEDICAL TECH

Instruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure

A spinal stabilization system may be formed in a patient. In some embodiments, a minimally invasive procedure may be used to form a spinal stabilization system in a patient. Bone fastener assemblies may be coupled to vertebrae. Each bone fastener assembly may include a bone fastener and a collar. Extenders may be coupled to the collar to allow for formation of the spinal stabilization system through a small skin incision. The extenders may allow for alignment of the collars to facilitate insertion of an elongated member in the collars. An elongated member may be positioned in the collars and a closure member may be used to secure the elongated member to the collars. An adjuster may be used in conjunction with the extenders to change a separation distance between the bone fastener assemblies.
Owner:ZIMMER BIOMET SPINE INC

Implantable devices for controlling the size and shape of an anatomical structure or lumen

An implantable device system for controlling the dimensions of internal anatomic passages corrects physiologic dysfunctions resulting from a structural lumen which is either too large or too small. Implantable devices are disclosed which employ various mechanisms for adjusting and maintaining the size of an orifice to which they are attached. Systems permit the implants to be implanted using minimally invasive procedures and permit final adjustments to the dimensions of the implants after the resumption of normal flow of anatomic fluids in situ.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC

Cervical interspinous process distraction implant and method of implantation

An implant for positioning between the spinous processes of cervical vertebrae include first and second wings for lateral positioning and a spacer located between the adjacent spinous processes. The implant can be positioned using minimally invasive procedures without modifying the bone or severing ligaments. The implant is shaped in accordance with the anatomy of the spine.
Owner:MEDTRONIC EURO SARL

Reflectance calibration of fluorescence-based glucose measurements

A noninvasive or minimally invasive procedure and system for measuring blood glucose levels is disclosed. A set of photodiodes detects the fluorescence and reflectance of light energy emitted from one or more emitters, such as LEDs, into a patient's skin. In an embodiment, small molecule metabolite reporters (SMMRs) that bind to glucose are introduced to the measurement area to provide more easily detected fluorescence.
Owner:CERCACOR LAB INC

Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen

A system for implanting a surgical device to control the circumference of internal anatomic passages corrects physiologic dysfunctions resulting from a structural lumen which is either too large or too small. Implants are disclosed which employ various means for adjusting and maintaining the size of an orifice to which they are attached. Systems permit the implants to be implanted using minimally invasive procedures and permit final adjustments to the circumference of the implants after the resumption of normal flow of anatomic fluids in situ. Methods are disclosed for using the implants to treat heart valve abnormalities, gastroesophageal abnormalities, anal incontinence, and the like.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC

Robot guided oblique spinal stabilization

A robotic system for performing minimally invasive spinal stabilization, using two screws inserted in oblique trajectories from an inferior vertebra pedicle into the adjacent superior vertebra body. The procedure is less traumatic than such procedures performed using open back surgery, by virtue of the robot used to guide the surgeon along a safe trajectory, avoiding damage to nerves surrounding the vertebrae. The robot arm is advantageous since no access is provided in a minimally invasive procedure for direct viewing of the operation site, and the accuracy required for oblique entry can readily be achieved only using robotic control. This robotic system also obviates the need for a large number of fluoroscope images to check drill insertion position relative to the surrounding nerves. Disc cleaning tools with flexible wire heads are also described. The drilling trajectory is determined by comparing fluoroscope images to preoperative images showing the planned path.
Owner:MAZOR ROBOTICS

Implantable therapy delivery element adjustable anchor

An implantable therapy delivery system has a therapy delivery element that is inserted or implanted into a human body and anchored or fixed to tissue to delivery a therapy to a patient. In one embodiment an implantable neurostimulator uses an electrical stimulation lead to delivery a therapy such as sacral nerve stimulation, peripheral nerve stimulation, and the like. In another embodiment the implantable therapeutic substance delivery device, also known as a drug pump, is connected to a catheter to deliver a therapy to treat conditions such as spasticity, cancer, pain, and the like. The therapy delivery element is anchored to tissue using an adjustable anchor having a therapy grip element, at least two extension elements connected to the therapy grip element, and a tissue fixation element connected to the extension elements. The extensions project substantially perpendicular in relation to the therapy delivery element and are configured to actuate the therapy grip element to an opened position and a closed position. A tissue fixation element is connected to the extensions and configured for fixation to a tissue location from an axial direction to the therapy delivery element. The adjustable anchor facilitates minimally invasive procedures, facilitates securing the therapy delivery element in the same plane as the therapy delivery element was inserted, facilitates rapid placement to reduce procedure time, and provides a wide range of other benefits. The adjustable anchor and its methods of operation have many embodiments.
Owner:MEDTRONIC INC

Devices and methods for coronary sinus pressure relief

A method and devices for relieving pressure in the left atrium of a patient's heart is disclosed. The method includes using an ablative catheter in a minimally invasive procedure to prepare an opening from the coronary sinus into a left atrium of the patient's heart. Once the opening is prepared, the opening may be enlarged by a technique such as expanding a balloon within the opening. A stent is then placed within the coronary sinus of the patient, with a transverse portion expanding within the opening, allowing blood to flow from the left atrium to the coronary sinus and then to the right atrium. Pressure within the left atrium is thus relieved.
Owner:DC DEVICES

Flexible elongated chain implant and method of supporting body tissue with same

Implants and methods for augmentation, preferably by minimally invasive procedures and means, of body tissue, including in some embodiments repositioning of body tissue, for example, bone and, preferably vertebrae are described. The implant may comprise one or more chain linked bodies inserted into the interior of body tissue. As linked bodies are inserted into body tissue, they may fill a central portion thereof and for example in bone can push against the inner sides of the cortical exterior surface layer, for example the end plates of a vertebral body, thereby providing structural support and tending to restore the body tissue to its original or desired treatment height. A bone cement or other filler can be added to further augment and stabilize the body tissue. The preferred implant comprises a single flexible monolithic chain formed of allograft cortical bone having a plurality of substantially non-flexible bodies connected by substantially flexible links.
Owner:DEPUY SYNTHES PROD INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products