Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

72 results about "Elongase" patented technology

Elongase is a generic term for an enzyme that catalyzes carbon chain extension of an organic molecule, especially a fatty acid. Elongases play a variety of roles in mammalian organisms, accounting for changes in tissue function, lipid regulation, and the overall physiology of an organism.

Novel elongase gene and method for producing multiple-unsaturated fatty acids

The invention relates to a novel elongase gene with the sequences stated in sequence SEQ ID NO:1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 7 or their homologs, derivatives or analogs, to a gene construct comprising this gene or its homologs, derivatives and analogs, and to its use. The invention also relates to vectors or transgenic organisms comprising an elongase gene with the sequence SEQ ID NO:1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 7 or its homologs, derivatives and analogs. The invention furthermore relates to the use of the elongase gene sequences alone or in combination with further elongases and / or further fatty acid biosynthesis genes. The present invention relates to a novel elongase gene with the sequence SEQ ID NO:1 or its homologs, derivatives and analogs. Furthermore, the invention relates to a process for the preparation of polyunsaturated fatty acids and to a process for introducing DNA into organisms which produce large amounts of oils and, in particular, oils with a high content of unsaturated fatty acids. Moreover, the invention relates to an oil and / or a fatty acid preparation with a higher content of polyunsaturated fatty acids with at least two double bonds and / or a triacylglycerol preparation with a higher content of polyunsaturated fatty acids with at least two double bonds.
Owner:BASF AG

Novel elongase gene, and process for the preparation of polyunsaturated fatty acids

The invention relates to a novel elongase gene with the sequences stated in sequence SEQ ID NO:1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 7 or their homologs, derivatives or analogs, to a gene construct comprising this gene or its homologs, derivatives and analogs, and to its use. The invention also relates to vectors or transgenic organisms comprising an elongase gene with the sequence SEQ ID NO:1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 7 or its homologs, derivatives and analogs. The invention furthermore relates to the use of the elongase gene sequences alone or in combination with further elongases and / or further fatty acid biosynthesis genes. The present invention relates to a novel elongase gene with the sequence SEQ ID NO:1 or its homologs, derivatives and analogs.Furthermore, the invention relates to a process for the preparation of polyunsaturated fatty acids and to a process for introducing DNA into organisms which produce large amounts of oils and, in particular, oils with a high content of unsaturated fatty acids. Moreover, the invention relates to an oil and / or a fatty acid preparation with a higher content of polyunsaturated fatty acids with at least two double bonds and / or a triacylglycerol preparation with a higher content of polyunsaturated fatty acids with at least two double bonds.
Owner:BASF AG

Elongase genes and uses thereof

The subject invention relates to the identification of several genes involved in the elongation of polyunsaturated acids (i.e., “elongases”) and to uses thereof. At least two of these genes are also involved in the elongation of monounsaturated fatty acids. In particular, elongase is utilized in the conversion of gamma linolenic acid (GLA) to dihomogama linolenic acid (DGLA) and in the conversion of DGLA or 20:4n-3 to eicosapentaenoic acid (EPA). DGLA may be utilized in the production of polyunsaturated fatty acids, such as arachiodonic acid (AA), docosahexaenoic acid (DHA), EPA, adrenic acid, ω6-docosapentaenoic acid or ω3-docosapentaenoic acid which may be added to pharmaceutical compositions, nutritional compositions, animal feeds, as well as other products such as cosmetics.
Owner:ABBOTT LAB INC

Human elongase genes and uses thereof

The present invention relates to elongase genes, their polypeptides and their control regions, and the use of such genes, polypeptides and control regions in determining compositions for use in the treatment of disease. The identified compositions regulate the expression of the elongase genes or modulate the activity of their protein products. The nucleotide and amino acid sequences are taught for ELG4, ELG6 and ELG7. The control sequences and function are taught for ELG1, ELG2, ELG3, ELG4, ELG5, ELG6 and ELG7.
Owner:XENON PHARMACEUTICALS INC +1

Novel method for the production of polyunsaturated fatty acids

The present invention relates to an improved process for the specific production of poly-unsaturated omega-3 and omega-6 fatty acids and a process for the production of triglycerides having an increased content of unsaturated fatty acids, in particular omega-3 and omega-6 fatty acids having at least two double bonds and a 20 or 22 carbon atom chain length. The invention relates to the produc-tion of a transgenic organism, preferably a transgenic plant or a transgenic microorganism, hav-ing an increased content of fatty acids, oils or lipids containing C20- or C22- fatty acids with a delta-5, 7, 8, 10 double bond, respectively due to the expression of a delta-8-desaturase and a delta-9- elon-gase from organisms such as plants preferably Algae like Isochrysis galbana or Euglena gracilis. In addition the invention relates to a process for the production of poly unsaturated fatty acids such as Eicosapentaenoic, Arachidonic, Docosapentaenoic or Docosahexaenoic acid through the co- expression of a delta -8-desaturase, a delta-9-elongase and a delta-5 desaturase in organisms such as microorganisms or plants.The invention additionally relates to the use of specific nucleic acid sequences encoding for the aforementioned proteins with delta-8-desaturase-, delta-9-elongase- or delta-5-desaturase-activity, nucleic acid constructs, vectors and organisms containing said nucleic acid sequences. The invention further relates to unsaturated fatty acids and triglycerides having an increased content of at least 1 % by weight of unsaturated fatty acids and use thereof.
Owner:UNIV OF BRISTOL

Method for the production of multiple-unsaturated fatty acids in transgenic organisms

The invention relates to a method for the production of multiply-unsaturated fatty acids in an organism, into which nucleic acids have been introduced, which code for polypeptides with Δ-5 elongase activity. Said nucleic acid sequences, optionally with further nucleic acid sequences, coding for polypeptides for the biosynthesis of fatty acids and lipid metabolism, are advantageously expressed in the organism. Nucleic acid sequences coding for a Δ-6 desaturase, a Δ-5 desaturase, Δ-4 desaturase and/or Δ-6 elongase activity are particularly advantageous and, advantageously, said saturases and elongases are derived from Thalassiosira, Euglena or Ostreococcus. The invention further relates to a method for the production of oils and/or triacylglycerides with an increased content of long-chain, multiply-unsaturated fatty acids. A particular embodiment of the invention is a method for the production of unsaturated ω-3 fatty acids and a method for the production of triglycerides with an increased content of unsaturated fatty acids, in particular, of Δ-3 fatty acids with more than three double bonds. Also disclosed is the production of a transgenic organism, preferably a transgenic plant, or a transgenic microorganism with increased content of ω-3 fatty acids, oils or lipids with ω-3 double bonds as a result of the expression of the elongases and desaturases employed in the above method, preferably in combination with ω-3 desaturases, for example a ω-3 desaturase from fungi of the family Pythiaceae such as the genus Phytophtora, for example, the genus and species Phytophtora infestans, or a ω-3 desaturase from algae such as the family Prasinophyceae, for example, the genus Ostreococcus and, particularly, the genus and species Ostreococcus tauri or diatomaceæ such as the genus Thalassiosira and, particularly, the genus and species Thalassiosira pseudonana. The invention also relates to the nucleic acid sequences, nucleic acid constructs, vectors and organisms containing the nucleic acid sequences and/or the nucleic acid constructs and transgenic organisms containing said nucleic acid sequences, nucleic acid constructs and/or vectors. A further part of the invention relates to oils, lipids and/or fatty acids produced according to the above method and use thereof and, furthermore, unsaturated fatty acids and triglycerides with an increased content of unsaturated fatty acids and use thereof.
Owner:BASF PLANT SCI GMBH

Method for detecting carcino-embryonic antigens by using electrochemical nucleic acid aptamer sensor on basis of terminal elongases

The invention discloses a method for detecting carcino-embryonic antigens by using an electrochemical nucleic acid aptamer sensor on the basis of terminal elongases. The method comprises the following steps: modifying a layer of 3' mercapto-terminated labeled carcino-embryonic antigen aptamer capturing probes on the surface of a gold electrode at first; then adding carcino-embryonic antigens and carcino-embryonic antigen aptamer signal probes, wherein the 3' mercapto-terminated labeled carcino-embryonic antigen aptamer capturing probes and the carcino-embryonic antigen aptamer signal probes can specifically recognize the carcino-embryonic antigens, so that a sandwich structure is formed on the surface of the electrode; extending biotin labeled nucleic acid long chains at 3' terminals of the carcino-embryonic antigen aptamer signal probes under the effect of terminal deoxynucleotidyl transferase, wherein avidin labeled horse radish peroxidase can be combined to the biotin labeled nucleic acid long chains in a compatible manner; and detecting electrochemical signal change generated by horse radish peroxidase catalyzed electrolyte so as to realize high-sensitivity and high-specificity detection on the carcino-embryonic antigens. The method can be used for early diagnosis of tumors, curative effect judgment, progression of the disease, prognosis estimation and the like.
Owner:迈科若(苏州)医疗科技有限公司

Method for detecting content of linoleic acid in tissues by liquid chromatography-tandem mass spectrometry and diagnostic kit of colorectal cancer

ActiveCN106872590AQuick checkAccurate detectionComponent separationVery long chain fatty acidMetabolic enzymes
The invention provides a method for detecting the content of linoleic acid in tissues by liquid chromatography-tandem mass spectrometry and a diagnostic kit of colorectal cancer. The method comprises the following steps: grinding a tissue sample into powder in liquid nitrogen; homogenizing the tissue powder with iced methanol containing BHT (Butylated Hydroxytoluene) and centrifuging; adding an interior label into supernatant and carrying out derivatization treatment with n-butanol; dispersing and dissolving the mixture by a mobile phase again to obtain a sample to be loaded and detected; analyzing the sample to be loaded and detected with the liquid chromatography-tandem mass spectrometry to obtain the content of the linoleic acid in the tissue sample. Furthermore, a metabolic enzyme of a linoleic acid pathway is subjected to expression analysis and a result shows that gene expression of FADS1 (Fatty Acid Desaturase 1), FADS2 (Fatty Acid Desaturase 2), ELOVL2 (elongase of very long chain fatty acid 2) and ELOVL5 (elongase of very long chain fatty acid 5) in the linoleic acid pathway is increased. The method provided by the invention can be used for detecting changes of the content of the linoleic acid of tumor tissues and normal tissues of patients with the colorectal cancer and expression changes of genes in a related metabolism pathway, and important reference is provided for diagnosis and treatment of the colorectal cancer and post-period nutrition support.
Owner:FOURTH MILITARY MEDICAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products