Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

153 results about "Cardiac imaging" patented technology

Cardiac imaging refers to non-invasive imaging of the heart using ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), or nuclear medicine (NM) imaging with PET or SPECT. These cardiac techniques are otherwise referred to as echocardiography, Cardiac MRI, Cardiac CT, Cardiac PET and Cardiac SPECT including myocardial perfusion imaging.

Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery

A method for planning minimally invasive direct coronary artery bypass (MIDCAB) for a patient includes obtaining acquisition data from a medical imaging system, and generating a 3D model of the coronary arteries and one or more cardiac chambers of interest. One or more anatomical landmarks are identified on the 3D model, and saved views of the 3D model are registered on an interventional system. One or more of the registered saved views are visualized with the interventional system.
Owner:APN HEALTH +1

Methods and systems for ultrasound imaging of the heart from the pericardium

A peritoneal ultrasound imager includes an elongated body less than about 20 inches in length that is adapted to be inserted through a cannula into or near the pericardium space, and an ultrasound transducer array at one end of the body that is suitable for ultrasound echocardiography. The cannula and ultrasound imager may be of a single piece construction. A method for imaging the heart includes introducing a cannula into the wall of a patient's chest, inserting the elongated body into the cannula, moving the inserted elongated body to a position near the heart, and imaging the heart with ultrasound echo.
Owner:EP MEDSYST

Method and System for Propagation of Myocardial Infarction from Delayed Enhanced Cardiac Imaging to Cine Magnetic Resonance Imaging Using Hybrid Image Registration

ActiveUS20120121154A1Correction of deformationAccurate alignment and deformation correctionImage enhancementImage analysisCine mriCardiac phase
A method and system for propagation of myocardial infarction from delayed enhanced magnetic resonance imaging (DE-MRI) to cine MRI is disclosed. A reference frame is selected in a cine MRI sequence. Deformation fields are calculated within the cine MRI sequence to register the frames of the cine MRI sequence to the reference frame. A DE-MRI image having an infarction region is registered to the reference frame of the cine MRI sequence. The DE-MRI image may be registered to the infarction region using a hybrid registration algorithm that unifies both intensity and feature points into a single cost function. Infarction information in the DE-MRI image is then propagated cardiac phases of the frames in the cine MRI sequence based on the registration of the DE-MRI image to the reference frame and the plurality of deformation fields calculated within the cine MRI sequence.
Owner:SIEMENS HEALTHCARE GMBH

Systems and methods for providing automated regional myocardial assessment for cardiac imaging

Systems and methods are provided for automated assessment of regional myocardial function using wall motion analysis methods that analyze various features / parameters of patient information (image data and non-image data) obtained from medical records of a patient. For example, a method for providing automatic diagnostic support for cardiac imaging generally comprises obtaining image data of a heart of a patient, obtaining features from the image data of the heart, which are related to motion of the myocardium of the heart, and automatically assessing regional myocardial function of one or more regions of a myocardial wall using the obtained features.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Method and system for propagation of myocardial infarction from delayed enhanced cardiac imaging to cine magnetic resonance imaging using hybrid image registration

ActiveUS8682054B2Accurate alignment and deformation correctionImage enhancementImage analysisCine mriCardiac phase
A method and system for propagation of myocardial infarction from delayed enhanced magnetic resonance imaging (DE-MRI) to cine MRI is disclosed. A reference frame is selected in a cine MRI sequence. Deformation fields are calculated within the cine MRI sequence to register the frames of the cine MRI sequence to the reference frame. A DE-MRI image having an infarction region is registered to the reference frame of the cine MRI sequence. The DE-MRI image may be registered to the infarction region using a hybrid registration algorithm that unifies both intensity and feature points into a single cost function. Infarction information in the DE-MRI image is then propagated cardiac phases of the frames in the cine MRI sequence based on the registration of the DE-MRI image to the reference frame and the plurality of deformation fields calculated within the cine MRI sequence.
Owner:SIEMENS HEALTHCARE GMBH

Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing

A method for quantifying cardiac desynchrony of the right and left ventricles includes obtaining cardiac acquisition data from a medical imaging system, and determining a movement profile from the cardiac acquisition data. The movement profile is directed toward identifying at least one of a time-based contraction parameter for a region of the left ventricle (LV), and a displacement-based contraction parameter for a region of the LV. The determined movement profile is visually displayed by generating a 3D model therefrom.
Owner:APN HEALTH +1

Systems and methods for automated diagnosis and decision support for heart related diseases and conditions

CAD (computer-aided diagnosis) systems and applications for cardiac imaging are provided, which implement methods to automatically extract and analyze features from a collection of patient information (including image data and / or non-image data) of a subject patient, to provide decision support for various aspects of physician workflow including, for example, automated assessment of regional myocardial function through wall motion analysis, automated diagnosis of heart diseases and conditions such as cardiomyopathy, coronary artery disease and other heart-related medical conditions, and other automated decision support functions. The CAD systems implement machine-learning techniques that use a set of training data obtained (learned) from a database of labeled patient cases in one or more relevant clinical domains and / or expert interpretations of such data to enable the CAD systems to “learn” to analyze patient data and make proper diagnostic assessments and decisions for assisting physician workflow.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC +1

Method and System for Computational Modeling of the Aorta and Heart

A method and system for generating a patient specific anatomical heart model is disclosed. A sequence of volumetric image data, such as computed tomography (CT), echocardiography, or magnetic resonance (MR) image data of a patient's cardiac region is received. A multi-component patient specific 4D geometric model of the heart and aorta estimated from the sequence of volumetric cardiac imaging data. A patient specific 4D computational model based on one or more of personalized geometry, material properties, fluid boundary conditions, and flow velocity measurements in the 4D geometric model is generated. Patient specific material properties of the aortic wall are estimated using the 4D geometrical model and the 4D computational model. Fluid Structure Interaction (FSI) simulations are performed using the 4D computational model and estimated material properties of the aortic wall, and patient specific clinical parameters are extracted based on the FSI simulations. Disease progression modeling and risk stratification are performed based on the patient specific clinical parameters.
Owner:SIEMENS HEALTHCARE GMBH

Integrated single photon emission computed tomography (SPECT)/transmission computed tomography (TCT) system for cardiac imaging

This invention features an integrated single photon emission computed tomography (SPECT) / transmission computed tomography (TCT) system for cardiac imaging including an open arc-shaped frame. A collimator system is shaped to approximately match the thoracic contour of patients having different sizes and weights and shaped to surround and position the collimator closely proximate a heart of a patient of said patients encompassed by at least one predetermined image volume for optimizing collimation of radiation photons emitted from the heart. An arc-shaped detector system is coupled to the collimator subsystem having a shape closely matching the shape of the collimator subsystem for detecting collimated radiation photons from the collimator subsystem and generating output electrical signals. A patient positioning subsystem positions a patient to a predetermined central longitudinal axis of the three-dimensional imaging volume and for intermittently and incrementally rotating the patient about the predetermined central longitudinal axis for generating a plurality of TCT images.
Owner:RUSH UNIV MEDICAL CENT

Systems and methods for automated diagnosis and decision support for heart related diseases and conditions

CAD (computer-aided diagnosis) systems and applications for cardiac imaging are provided, which implement methods to automatically extract and analyze features from a collection of patient information (including image data and / or non-image data) of a subject patient, to provide decision support for various aspects of physician workflow including, for example, automated assessment of regional myocardial function through wall motion analysis, automated diagnosis of heart diseases and conditions such as cardiomyopathy, coronary artery disease and other heart-related medical conditions, and other automated decision support functions. The CAD systems implement machine-learning techniques that use a set of training data obtained (learned) from a database of labeled patient cases in one or more relevant clinical domains and / or expert interpretations of such data to enable the CAD systems to “learn” to analyze patient data and make proper diagnostic assessments and decisions for assisting physician workflow.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC +1

Cardiovascular imaging and functional analysis system

A cardiovascular imaging and functional analysis system and method is disclosed, wherein a dedicated fast, sensitive, compact and economical imaging gamma camera system that is especially suited for heart imaging and functional analysis is employed. The cardiovascular imaging and functional analysis system of the present invention can be used as a dedicated nuclear cardiology small field of view imaging camera. The disclosed cardiovascular imaging system and method has the advantages of being able to image physiology, while offering an inexpensive and portable hardware, unlike MRI, CT, and echocardiography systems.The cardiovascular imaging system of the invention employs a basic modular design suitable for cardiac imaging with one of several radionucleide tracers. The detector can be positioned in close proximity to the chest and heart from several different projections, making it possible rapidly to accumulate data for first-pass analysis, positron imaging, quantitative stress perfusion, and multi-gated equilibrium pooled blood (MUGA) tests..In a preferred embodiment, the Cardiovascular Non-Invasive Screening Probe system can perform a novel diagnostic screening test for potential victims of coronary artery disease. The system provides a rapid, inexpensive preliminary indication of coronary occlusive disease by measuring the activity of emitted particles from an injected bolus of radioactive tracer. Ratios of this activity with the time progression of the injected bolus of radioactive tracer are used to perform diagnosis of the coronary patency (artery disease).
Owner:NORTH COAST IND INC

Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing

A method for quantifying cardiac desynchrony of the right and left ventricles includes obtaining cardiac acquisition data from a medical imaging system, and determining a movement profile from the cardiac acquisition data. The movement profile is directed toward identifying at least one of a time-based contraction parameter for a region of the left ventricle (LV), and a displacement-based contraction parameter for a region of the LV. The determined movement profile is visually displayed by generating a 3D model therefrom.
Owner:APN HEALTH +1

Cardiovascular imaging and functional analysis system

A Cardiovascular imaging and functional analysis system and method employing a dedicated fast, sensitive, compact and economical imaging gamma camera system that is especially suited for heart imaging and functional analysis. The system uses a dedicated nuclear cardiology small field of view imaging camera, allowing image physiology, while offering inexpensive and portable hardware. In some variations, a basic modular design suitable for cardiac imaging with one of several radionucleide tracers is used. The detector is positioned in close proximity to the chest and heart from several different projections, allowing rapid accumulation of data for first-pass analysis, positron imaging, quantitative stress perfusion, and multi-gated equilibrium pooled blood tests. In one variation, a Cardiovascular Non-Invasive Screening Probe system provides rapid, inexpensive preliminary indication of coronary occlusive disease by measuring the activity of emitted particles from an injected bolus of radioactive tracer.
Owner:NORTH COAST IND INC

Ultrasound 3D imaging system

The present invention relates to an ultrasound imaging system in which the scan head includes a beamformer circuit that performs far field subarray beamforming or includes a sparse array selecting circuit that actuates selected elements. When using a hierarchical two-stage or three-stage beamforming system, three dimensional ultrasound images can be generated in real-time. The invention further relates to flexible printed circuit boards in the probe head. The invention furthermore relates to the use of coded or spread spectrum signalling in ultrasound imaging systems. Matched filters based on pulse compression using Golay code pairs improve the signal-to-noise ratio thus enabling third harmonic imaging with suppressed sidelobes. The system is suitable for 3D full volume cardiac imaging.
Owner:TERATECH CORP

Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.
Owner:RGT UNIV OF CALIFORNIA

Method for tracking motion phase of an object for correcting organ motion artifacts in X-ray CT systems

The present invention relates to a method for tracking motion phase of an object. A plurality of projection data indicative of a cross-sectional image of the object is received. The projection data are processed for determining motion projection data of the object indicative of motion of the object based on the attenuation along at least a same line through the object at different time instances. A motion phase of the object with the object having the least motion is selected. Finally, projection data acquired at time instances within the selected motion phase of the object are selected for tomographical image reconstruction. Reconstructed images clearly show a substantial improvement in image quality by successfully removing motion artifacts using the method for tracking motion phase of an object according to the invention. The method is highly beneficial in cardiac imaging using X-ray CT scan.
Owner:CANAMET CANADIAN NAT MEDICAL TECH

Multiple preparatory excitations and readouts distributed over the cardiac cycle

A magnetic resonance cardiac imaging method for imaging during a cardiac cycle interval includes monitoring an electrocardiographic signal (90) associated with the imaged heart for a first trigger event (102). Responsive to the first trigger event, a data acquisition sequence (112, 120) is applied, including a first preparation sequence block (114), a first imaging sequence block (116) having at least one readout interval (228) that collects first data (118), a second preparation sequence block (122), and a second imaging sequence block (124) having at least one readout interval (228) that collects second data (126). The data acquisition sequence (112, 120) occupies an acquisition time interval which is less than the cardiac cycle interval of the imaged heart.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Method and apparatus to produce ultrasonic images using multiple apertures

A combination of an ultrasonic scanner and an omnidirectional receive transducer for producing a two-dimensional image from the echoes received by the single omnidirectional transducer is described. Two-dimensional images with different noise components can be constructed from the echoes received by additional transducers. These can be combined to produce images with better signal to noise ratios and lateral resolution. Also disclosed is a method based on information content to compensate for the different delays for different paths through intervening tissue is described. Specular reflections are attenuated by using even a single omnidirectional receiver displaced from the insonifying probe. The disclosed techniques have broad application in medical imaging but are ideally suited to multi-aperture cardiac imaging using two or more intercostal spaces. Since lateral resolution is determined primarily by the aperture defined by the end elements, it is not necessary to fill the entire aperture with equally spaced elements. In fact, gaps can be left to accommodate spanning a patient's ribs, or simply to reduce the cost of the large aperture array. Multiple slices using these methods can be combined to form three-dimensional images.
Owner:MAUI IMAGING

Method and apparatus to produce ultrasonic images using multiple apertures

A combination of an ultrasonic scanner and an omnidirectional receive transducer for producing a two-dimensional image from the echoes received by the single omnidirectional transducer is described. Two-dimensional images with different noise components can be constructed from the echoes received by additional transducers. These can be combined to produce images with better signal to noise ratios and lateral resolution. Also disclosed is a method based on information content to compensate for the different delays for different paths through intervening tissue is described. Specular reflections are attenuated by using even a single omnidirectional receiver displaced from the insonifying probe. The disclosed techniques have broad application in medical imaging but are ideally suited to multi-aperture cardiac imaging using two or more intercostal spaces. Since lateral resolution is determined primarily by the aperture defined by the end elements, it is not necessary to fill the entire aperture with equally spaced elements. In fact, gaps can be left to accommodate spanning a patient's ribs, or simply to reduce the cost of the large aperture array. Multiple slices using these methods can be combined to form three-dimensional images.
Owner:MAUI IMAGING

Radioimaging applications of and novel formulations of teboroxime

A method for cardiac imaging is provided, including administering to an adult human subject an amount of a teboroxime species having a radioactivity of less than 5 mCi at a time of administration, and performing a SPECT imaging procedure of a cardiac region of interest (ROI) of the subject. Other embodiments are also described.
Owner:SPECTRUM DYNAMICS MEDICAL LTD

Method and coils for human whole-body imaging at 7 t

A progressive series of five new coils is described. The first coil solves problems of transmit-field inefficiency and inhomogeneity for heart and body imaging, with a close-fitting, 16-channel TEM conformal array design with efficient shield-capacitance decoupling. The second coil progresses directly from the first with automatic tuning and matching, an innovation of huge importance for multi-channel transmit coils. The third coil combines the second, auto-tuned multi-channel transmitter with a 32-channel receiver for best transmit-efficiency, control, receive-sensitivity and parallel-imaging performance. The final two coils extend the innovative technology of the first three coils to multi-nuclear (31P-1H) designs to make practical human-cardiac imaging and spectroscopy possible for the first time at 7 T.
Owner:LIFE SERVICES

C-pyrazole A2A receptor agonists

2-adenosine C-pyrazole compounds having formula (a) and methods for using the compounds as A2A receptor agonists to stimulate mammalian coronary vasodilatation for therapeutic purposes and for purposes of imaging the heart
Owner:TPG AXON LEX SUB TRUST +1

System For Continuous Cardiac Imaging And Mapping

A system improves precision and reliability of intra-cardiac catheter position tracking and monitoring. An interventional system for internal anatomical examination includes a catheterization device for internal anatomical insertion. The catheterization device includes, at least one magnetic field sensor for generating an electrical signal in response to rotational movement of the at least one sensor about an axis through the catheterization device within a magnetic field applied externally to patient anatomy and a signal interface for buffering the electrical signal for further processing. A signal processor processes the buffered electrical signal to derive a signal indicative of angle of rotation of the catheterization device relative to a reference. The angle of rotation is about an axis through the catheterization device. A reproduction device presents a user with data indicating the angle of rotation of the catheterization device.
Owner:SIEMENS MEDIAL SOLUTIONS USA INC

Systems and methods for providing automated regional myocardial assessment for cardiac imaging

Systems and methods are provided for automated assessment of regional myocardial function using wall motion analysis methods that analyze various features / parameters of patient information (image data and non-image data) obtained from medical records of a patient. For example, a method for providing automatic diagnostic support for cardiac imaging generally comprises obtaining image data of a heart of a patient, obtaining features from the image data of the heart, which are related to motion of the myocardium of the heart, and automatically assessing regional myocardial function of one or more regions of a myocardial wall using the obtained features.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Ultrasound 3D imaging system

The present invention related to an ultrasound imaging system win which the scan head includes a beamformer circuit that performs far field subarray beamforming or includes a sparse array selecting circuit that actuates selected elements. When using a hierarchical two-stage or three-stage beamforming system, three dimensional ultrasound images can be generated in real-time. The invention further relates to flexible printed circuit boards in the probe head. The invention furthermore related to the use. of coded or spread spectrum signaling in ultrasound imagining systems. Matched filters based on pulse compression using Golay code pairs improve the signal-to-noise ratio thus enabling third harmonic imaging with suppressed sidelobes. The system is suitable for 3D full volume cardiac imaging.
Owner:TERATECH CORP

Method of motion compensation for trans-catheter aortic valve implantation

A method (10) to compensate for cardiac and respiratory motion in cardiac imaging during minimal invasive (e.g., trans-catheter) AVI procedures by image-based tracking (20, 25) on fluoroscopic images.
Owner:SIEMENS HEALTHCARE GMBH

Method and system for cardiac imaging and catheter guidance for radio frequency (RF) ablation

A method for imaging for cardiac catheter guidance comprises displaying a two-dimensional (2D) image of a heart, including a catheter; registering and blending the 2D image and a three-dimensional (3D) image of the heart to derive a blended image; displaying the blended image and the 3D image; and extracting an image of the catheter and inserting it into the 3D image.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Method and system for computational modeling of the aorta and heart

A method and system for generating a patient specific anatomical heart model is disclosed. A sequence of volumetric image data, such as computed tomography (CT), echocardiography, or magnetic resonance (MR) image data of a patient's cardiac region is received. A multi-component patient specific 4D geometric model of the heart and aorta estimated from the sequence of volumetric cardiac imaging data. A patient specific 4D computational model based on one or more of personalized geometry, material properties, fluid boundary conditions, and flow velocity measurements in the 4D geometric model is generated. Patient specific material properties of the aortic wall are estimated using the 4D geometrical model and the 4D computational model. Fluid Structure Interaction (FSI) simulations are performed using the 4D computational model and estimated material properties of the aortic wall, and patient specific clinical parameters are extracted based on the FSI simulations. Disease progression modeling and risk stratification are performed based on the patient specific clinical parameters.
Owner:SIEMENS HEALTHCARE GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products