In one or more embodiments, the present invention provides a method of forming compact, flexible, stable and biocompatible conducting polymer coating for bioelectronics devices. In one or more embodiments, the present invention relates to a novel method of synthesizing a sulfobetaine-functionalized conjugated polymer platform using 3,4-ethylenedioxythiophene (EDOT) as the conducting backbone (SBEDOT). This SBEDOT monomer is highly water-soluble and can be directly polymerized to form a densely packed film / coating on conductive or semi-conductive surfaces through electro-polymerization in a 100% aqueous solution without the need for organic solvents or surfactants. These polySBEDOT (PSBEDOT) coated surfaces have been shown to have electro-switchable antimicrobial / antifouling properties and excellent electrically conducting properties, which minimize infection, increase biocompatibility, and improve the performance of bioelectronics.