Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

139results about How to "Increased drag" patented technology

Passive jet spoiler for yaw control of an aircraft

InactiveUS7143983B2Increased dragLimits undesirable roll and pitch momentsAircraft navigation controlWingsAirplaneVALVE PORT
A wing for an aircraft has a passive jet spoiler for providing yaw control by increasing drag on the wing. The spoiler comprises an inlet located near the leading edge of a lower surface of the wing and at least one outlet formed on the lower surface or on an upper surface of the wing. An internal passage connects the inlet and each outlet for allowing air to pass from the inlet to the outlet. The air exits the outlets generally normal to the respective surface of the wing, causing a laminar flow to separate from the surfaces downstream of each outlet. The separated flow increases the drag on the wing, producing a yawing moment on the aircraft. Selective placement of the outlets on the upper and lower surfaces limits undesirable roll and pitch moments. Valves are provided for selectively controlling the amount of air passing through the spoiler.
Owner:LOCKHEED MARTIN CORP

Variable camber continuous aerodynamic control surfaces and methods for active wing shaping control

ActiveUS9227721B1Improve various performance metricNo additional benefitAircraft controlWing shapesLeading edgeControl signal
An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
Owner:NASA

Blade for a rotor of a wind turbine provided with barrier generating means

A blade for a rotor of a wind turbine has a substantially horizontal rotor shaft, the rotor including a hub, from which the blade extends substantially in a radial direction when mounted to the hub. The blade includes a profiled contour including a leading edge and a trailing edge as well as a pressure side and a suction side, the profiled contour when being impacted by an incident airflow generating a lift. The profiled contour is divided into a root region with a substantially circular profile closest to the hub, an airfoil region with a lift generating profile furthest away from the hub, and a transition region between the root region and the airfoil region. The profile of the transition region gradually changes in the radial direction from the circular profile of the root region to the lift generating profile of the airfoil region. The suction side comprises at least a first zone, which extends substantially in the direction of the incident airflow, and which is positioned in a zone of a cross-flow. The first zone includes a first barrier generating means adapted to generating a barrier of airflow, which extends essentially in the direction of the incident airflow, the barrier of airflow being of sufficient strength and length so as to effectively reduce the cross-flow.
Owner:LM GLASSFIBER

Cooling fan control

Methods and systems are provided for reducing aerodynamic drag on a moving vehicle. One example method comprises, during a first vehicle moving condition, operating the cooling fan, and during a second vehicle moving condition, selectively applying a braking torque on the fan.
Owner:FORD GLOBAL TECH LLC

Method and system for loading and unloading cargo assembly onto and from an aircraft

A system for loading and unloading a cargo assembly onto and from an aircraft. The system comprises an aircraft and a movable platform. The aircraft comprises a forward fairing, an aft fairing, a spine disposed between the forward fairing and the aft fairing and a plurality of mounts coupled to the spine and configured to structurally engage the cargo container onto the spine. The aft fairing is movable between a fixed position for flight and an open position for at least loading and unloading of the cargo assembly. The aircraft is configured such that an unobstructed passageway is provided in an area underneath the spine during loading or unloading of the cargo assembly. An aft access is provided when the aft fairing is moved to the open position. The movable platform is used to maneuver the cargo assembly for loading and unloading onto and from the spine, respectively.
Owner:BIOSPHERE AEROSPACE

Vortex generator arrangement for an airfoil

A particular arrangement of vortex generators for an airfoil is described. The vortex generators are provided in pairs, preferably on a wind turbine blade, wherein by arranging the vortex generators according to specified characteristics, a surprising improvement in blade performance is provided over the prior art systems.
Owner:LM WIND POWER AS

Micropattern grip surface

InactiveUS20070082748A1Wipe away perspirationIncrease resistanceGolf clubsRacket sportsEngineeringGolf Ball
A micropattern grip surface for use on a grip, and particularly a grip for a golf club, wherein the pattern includes alternating upstanding ridges and grooves between the ridges. In a preferred embodiment, the ridges extend with a generally longitudinal direction of extension component on the grip with a generally circumferential direction of extension component and also may be parallel. The ridges in an embodiment zigzag along the longitudinal direction. In an embodiment, at intersections or bends between the zig and the zag line elements, additional free end barbs extend from the intersections. The density, width and height of the line elements of the ridges are selected to provide drag on the hand or object gripping the grip, preferably in both the longitudinal and circumferential directions, and to give the grip a velvety feel. Alternatively, each of the ridges is comprised of some line elements. Each ridge or a set of line segments thereof may be aligned in a direction of at least one of longitudinally along, circumferentially around, obliquely to the axis or spirally around the grip surface.
Owner:GRIP SURFACE TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products