Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

197results about "Air braking surfaces" patented technology

Balloon device for lowering space object orbits

InactiveUS6830222B1Reduce spacingIncreasing atmospheric drag on the envelopeLaunch systemsAir braking surfacesControl systemSpace object
An apparatus for lowering an orbit of a space object includes an envelope, an inflation system for inflating the envelope, an inflation control system for controlling the inflation system, and attachment hardware for connecting the apparatus and the space object. Inflating the envelope increases an effective drag area of the envelope for increasing atmospheric drag on the envelope.
Owner:GLOBAL AEROSPACE

Helicopter rotor blade with a movable flap

A helicopter rotor blade includes a main airfoil body (12) and a movable control flap (3) incorporated in the trailing edge profile of the airfoil body. The flap (3) is movably connected to the main airfoil body (12) by a flexibly bendable junction element (4), and is actuated by a piezoelectric actuator unit (5) via a push / pull rod (6) and a lever arm (7), whereby the control flap is deflected relative to the main airfoil body. The junction element (4) is preferably a continuous integral fiber-reinforced composite component having a flexible bending portion (42) with a reduced thickness in comparison to the adjoining portions, whereby the reinforcing fibers extend continuously through the joint in the direction of the connection between the main airfoil body and the flap.
Owner:AIRBUS HELICOPTERS DEUT GMBH

Lifters, methods of flight control and maneuver load alleviation

The present invention provides a flight control system and method for various models of aircraft, including thin-winged, long range, transonic and low supersonic aircraft, and may be beneficial on supersonic and hypersonic aircraft as well. One embodiment of the flight control system comprises a plurality of lifters for generating lift or drag, the plurality of lifters mechanically associated with a lower surface of each wing in a pair of wings. During operation, the lifters may be selectively deployed alone or in combination with other flight control devices, such as ailerons and spoilers, to provide various operative benefits such as improved roll control, speed braking functionality, and maneuver load alleviation.
Owner:THE BOEING CO

System for setting the span load distribution of a wing

A system for setting a span load distribution of a wing of an aircraft with a base flap system comprises at least one inboard flap element and one outboard flap element, which elements in the direction of the span are arranged on the trailing edge of the wing, and can be positioned relative to the span direction of the wing. The flap elements are not mechanically coupled with each other and are controlled independently of each other for the purpose of setting the span load distribution.
Owner:AIRBUS OPERATIONS GMBH

Modular aircraft system

The modular aircraft system includes a single fuselage having a permanently installed empennage and plural sets of wing modules and engine modules, with each wing and engine module optimized for different flight conditions and missions. The fuselage and each of the modules are configured for rapid removal and installation of the modules to minimize downtime for the aircraft. Short wings having relatively low aspect ratio are provided for relatively high speed flight when great endurance and / or weight carrying capacity are not of great concern. Long wings having high aspect ratio are provided for longer range and endurance flights where speed is not absolutely vital. A medium span wing module is also provided. Turboprop, single turbojet, and dual turbojet engine modules are provided for installation depending upon mission requirements for any given flight. The aircraft is primarily adapted for use as an autonomously operated or remotely operated unmanned aerial vehicle.
Owner:AL SABAH NASSER M

Aircraft thickness/camber control device for low sonic boom

An aircraft thickness / camber control device mounts to the lower surface of a airfoil configuration, for example on a fuselage, and extends along a longitudinal axis. The device, when deployed, generates expansions ahead of compressions generated by off-design conditions, inlet spillage for example, and enables maintenance of a low boom signature. The device, when positioned at appropriate locations, may also be used as a drag reduction device. The thickness / camber control device comprises a structural member capable of coupling to the airfoil at a position forward of the concentrated source of added compression and a control element. The control element is coupled to the structural member and controls the structural member to adjust thickness / camber of the configuration to cancel the far-field effect of the extra compression or concentrated pressure source.
Owner:SUPERSONIC AEROSPACE INT

Arrangement for generating vortexes

A spoiler and wing of an aircraft. A bottom surface of the spoiler has several longitudinal, elongated grooves. At least some of the grooves are equipped with one or more vortex generators. Further, the invention relates to a wing having in its back part at least one flap and having at least one spoiler of the invention arranged on the section between the wing and flap. The invention also relates to a method and control surface for generating vortexes.
Owner:PATRIA AEROSTRUCTURES

Aircraft wing load alleviation system

An aircraft wing load alleviation system incorporating a wing, a spoiler panel (14), a device (16, 17) which restricts circulation of air around a trailing edge of the spoiler and a control system. The spoiler panel is pivotally attached to the wing so that the spoiler panel can be rotated up from a lowered position to a raised position, thereby opening a void between the spoiler panel and the wing. The retractable device can be deployed from a retracted position to an extended position in which it restricts circulation of air around the trailing edge of the spoiler panel and into the void, thus reducing induced drag. The control system is configured to detect or predict an increase in the lift of the wing and rotate the spoiler panel to its raised position in response to a detected or predicted increase in the lift of the wing.
Owner:AIRBUS OPERATIONS LTD

Systems and methods for controlling aircraft flaps and spoilers

Systems and methods for controlling aircraft flaps and spoilers. Systems in accordance with some embodiments include a wing having a trailing edge, and a flap positioned proximate to the wing trailing edge and being deployable relative to the wing between a first flap position and a second flap position by operation of a first actuator. A spoiler can be positioned at least proximate to the trailing edge and can be movable among at least three positions, including a first spoiler position in which the spoiler forms a generally continuous contour with an upper surface of the wing, a second spoiler position deflected downwardly from the first, and a third spoiler position deflected upwardly from the first. A second actuator can be operatively coupled to the spoiler to move the spoiler among the first, second and third spoiler positions in a manner that is mechanically independent of the motion of the flap.
Owner:THE BOEING CO

Wing employing leading edge flaps and winglets to achieve improved aerodynamic performance

ActiveUS20070262207A1Increase aft liftImprove aerodynamic flow fieldInfluencers by generating vorticesWith power amplificationLeading edgeControl system
A wing for use on a supersonic aircraft that includes an inboard section a central section of the wing outboard of the inboard portion, and an outboard section. The outboard section can be a winglet oriented anhedrally relative to a lateral axis of the supersonic aircraft. Leading edge segments on the inboard section, central section and outboard winglet may have mounted thereon leading-edge flaps. These flaps are adjusted by a control system operable to reposition the leading-edge flaps in order to improve the aerodynamic performance of the supersonic aircraft. This winglet promotes sonic boom minimization. Further, the wing tip anhedral allows greater inboard dihedral. This effectively pushes lift aft for sonic boom and control purposes while minimizing the movement of control surfaces.
Owner:SUPERSONIC AEROSPACE INT

Auxiliary wing and flap assembly for an aircraft

An auxiliary wing and flap assembly for an aircraft which is to be extendable from a retracted position to a deployed position. Relative to the chord of the wing, the split flap is located directly adjacent the trailing edge of the wing with the auxiliary wing assembly being located at approximately the mid length of the chord of the wing. A split flap assembly extends approximately one-half the length of the aircraft wing with the auxiliary wing assembly extending the total length of the aircraft wing. The split flap is extendable to assume approximately a sixty degree angle relative to the bottom surface of the aircraft wing while the auxiliary wing assembly is extendible to assume a maximum of ninety degree angle relative to the bottom surface of the aircraft wing. The chord length of the split flap is equal to approximately 0.15 of the chord length of the aircraft wing while the auxiliary wing assembly has an airfoil-shaped member that has a chord length of approximately 0.25 the chord length of the aircraft wing.
Owner:NAHAS ROGER A

Aircraft with forward opening inlay spoilers for yaw control

An aircraft comprises first and second wings positioned on opposite sides of a longitudinal axis, a first forward opening control surface attached to an upper surface of the first wing, and a second forward opening control surface attached to an upper surface of the second wing, wherein each of the first and second hinges is canted with respect to a direction perpendicular to a longitudinal axis of the aircraft. A method of providing yaw control of an aircraft is also provided. The method comprises the steps of providing a first forward opening, canted spoiler in a top surface of a first wing of the aircraft, providing a second forward opening, canted spoiler in a top surface of a second wing of the aircraft, and operating the first and second spoilers differentially to create a yaw moment. The creation of yaw moments without any down force has application in sweptback wings where the tips are behind the center of gravity of the aircraft. The advantage is in reducing radar cross section over traditional (forward hinged, rearward opening) spoilers where there must be a spoiler on the bottom side to counter the down force created by the top spoiler.
Owner:NORTHROP GRUMMAN SYST CORP

Aircraft wing with extendible nose flap

An aircraft wing including a wing box and a nose flap moveably connected to the wing box by first and second folding hinges. A first transverse link is pivotally connected to first portions of the first and second folding hinges. A second transverse link is pivotally connected to second portions of the first and second folding hinges. An actuator is connected diagonally between the first and second transverse links for moving the nose flap between a retracted position and an extended position. The instant abstract is neither intended to define the invention disclosed in the specification nor intended to limit the scope of the invention in any way.
Owner:AIRBUS DEFENCE & SPACE

Trailing edge flap

A trailing edge flap arrangement for an aircraft wing, comprising an array of flap elements moveable collectively between a retracted and an extended position, wherein at least the leading flap element is rotatable about its axis independently of the collective array movement. Also, a method of operating the trailing edge flap arrangement, comprising collectively moving the array of flap elements between a retracted and an extended position, and rotating at least the leading flap element about its axis independently of the collective array movement. The flap arrangement can be deployed as a single slotted flap which can be vented to further improve lift performance. The flap arrangement can also be operated to provide variable camber across the performance envelope.
Owner:AIRBUS OPERATIONS LTD

Aerodynamic fan control effector

ActiveUS20090230240A1Maximize net area of bladeFacilitate packaging and stowageInfluencers by generating vorticesAir braking surfacesActuatorAirplane
A fan control effector for an aircraft comprises at least one blade configured to be pivotably deployable in a radially outward direction from a retracted position to a deployed position such that the blade extends out of the aircraft. The fan control effector may be mounted in a symmetrical arrangement about a longitudinal axis on opposing wings of the aircraft. Furthermore, the fan control effector may comprise any number of blades for independent deployment outwardly from the wing. The blades are configured to be angularly deployable along a direction that is non-parallel to the longitudinal axis of the aircraft. The blades may be configured to be deployable sequentially from the wing starting with an initial deployment of an aft-most one of the blades.
Owner:THE BOEING CO

Aerodynamic profile with an adjustable flap

An aerodynamic profile has an adjustable flap, which has a forward profile area as well as a rearward profile area situated in the downward current, bounded by a pressure-side covering skin as well as a suction-side covering skin. The pressure-side and suction-side covering skins converge in the rearward profile area at a trailing profile edge. In the rearward profile area on the underside of the pressure-side covering skin, a flap is swivellably disposed such that, in the inoperative condition, the flap, pointing in the flow direction, rests against the contour of the pressure-side covering skin and, in the deflected condition, the flap encloses an angle with the pressure-side covering skin. An airtight hinge connection is integrated in the flap so that, on the side of the flap protected from the wind, a turbulence system which improves the flow conditions is formed.
Owner:AIRBUS OPERATIONS GMBH

Method and system for loading and unloading cargo assembly onto and from an aircraft

A system for loading and unloading a cargo assembly onto and from an aircraft. The system comprises an aircraft and a movable platform. The aircraft comprises a forward fairing, an aft fairing, a spine disposed between the forward fairing and the aft fairing and a plurality of mounts coupled to the spine and configured to structurally engage the cargo container onto the spine. The aft fairing is movable between a fixed position for flight and an open position for at least loading and unloading of the cargo assembly. The aircraft is configured such that an unobstructed passageway is provided in an area underneath the spine during loading or unloading of the cargo assembly. An aft access is provided when the aft fairing is moved to the open position. The movable platform is used to maneuver the cargo assembly for loading and unloading onto and from the spine, respectively.
Owner:BIOSPHERE AEROSPACE

Aircraft wing with extendible nose flap

An aircraft wing including a wing box and a nose flap moveably connected to the wing box by first and second folding hinges. A first transverse link is pivotally connected to first portions of the first and second folding hinges. A second transverse link is pivotally connected to second portions of the first and second folding hinges. An actuator is connected diagonally between the first and second transverse links for moving the nose flap between a retracted position and an extended position. The instant abstract is neither intended to define the invention disclosed in the specification nor intended to limit the scope of the invention in any way.
Owner:AIRBUS DEFENCE & SPACE

Fluid flow modification apparatus

InactiveUS20100226202A1Present obstructionFlow mixersAir braking surfacesChemical reactionEngineering
Embodiments of the invention relate to apparatus for modifying the properties of a flow field and to a method of selecting an apparatus to achieve a desired flow field. The invention finds particular application in the control of the mixing of fluids, heat transfer within and between fluids, acoustic noise, oscillations in fluids, microchip cooling, structural vibrations and chemical reactions. Embodiments of the invention comprise a fractal fluid flow modification structure comprising: a plurality of turbulence-creating elements; and a support for holding the turbulence-creating elements in the fluid so as to allow movement of the fluid relative to the turbulence-creating elements, wherein said turbulence-creating elements include at least two different types of element, including a first type of element and a second type of element, and wherein the turbulence-creating elements are arranged in a fractal structure, the first type of element being arranged at a first level in said fractal structure and the second type of element being arranged at a second level in said fractal structure. Since the fluid flow modification structure comprises a plurality of levels of fractal structures, the surface area of the first type of element differs from that of the second type of element: varying the respective surface areas between fractal levels provides a convenient mechanism for controlling turbulence levels in the fluid.
Owner:IMPERIAL INNOVATIONS LTD

Canard position and dihedral for boom reduction and pitch/directional control

A supersonic aircraft comprises the fuselage extending forward and aft along a longitudinal axis, a wing coupled to the fuselage, and a canard. The canard is coupled onto the fuselage forward of the wing at an elevated position that enables stretching of the aircraft lifting length and forms an effective area distribution to attain a shaped sonic boom signature.
Owner:SUPERSONIC AEROSPACE INT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products